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Introduction

From among the many research subjects that I encountered in
studying and comparing different mechanisms of motion
transfer, especially in a steam engine, where efficiency and
reliability depend much on the way the power of steam is
transferred, I was especially occupied by the theory of
mechanisms known as parallelograms.....
While trying to derive the rules for constructing specific
parallelograms directly from their properties, I encountered
problems in analysis that were not well known then.

— P. L. Chebyshev
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Introduction

As formulated in “Théorie des mécanismes connus sous le nom
de parallélogrammes (1854)”, the general problem is:

Given a continuous function f , find a polynomial of a given
degree n such that the maximum of its deviation from f (x) in
a given interval is smaller than that of all other polynomials
of the same degree.

In other words, given an interval [a, b], one has to find the
coefficients αi of P(x) = αnxn + . . .+ α1x + α0 so that the
expression max

a≤x≤b
|f (x)− P(x)| is minimized.
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Introduction
But how do we find the approximating polynomial P(x)?
The difference f (x)− P(x) is, according to Chebyshev, known
to necessarily have the following property:

The set of its absolute values of maxima and minima in the
given interval contains the same number at least n+2 times.

He never gives a proof of this statement, nor does he discuss
existence and uniqueness, but he sets up a system of algebraic
equations from which one can determine P(x).
Certain particular cases, e.g., f (x) = xn+p with p ≥ 1, can
also be solved directly.
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Our setting
In this course, we shall merely focus on how to approximate xn

by polynomials of lower degree.
But we shall do so on fairly general sets, not just intervals!

Let E ⊂ R (or C) be an infinite, compact set of points. We
sometimes assume that Cap(E) > 0 and suppose that E is
regular (for potential theory).
The Chebyshev polynomial of degree n is the monic poly-
nomial Tn with

tn := ‖Tn‖E = inf
{
‖P‖E : deg(P) = n and P is monic

}
.

Here, ‖ · ‖E denotes the sup-norm on E.
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Timeline

1854: Chebyshev – one interval (monic polynomials)

1868: Zolotarev – fix 2 coefficients (zn + σzn−1 + . . .)

1919: Faber – analytic Jordan regions (strong asymptotics)

1924: Fekete, Szegő – compact subsets of C (weak asymp.)

1928: Akhiezer – fix 3 coefficients (zn + σzn−1 + τzn−2 + . . .)

1931: Akhiezer – two intervals (periodic/almost periodic)

1960: Meyman – fix any number of coefficients

1969: Widom – finitely many smooth regions (strong asymp.)
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Example: E = [−1, 1]
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Example, cont.
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Example, cont.
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Example, cont.
When E = [−1, 1], the case considered by Chebyshev, the
polynomials in question are

T0(x) = 1, Tn(x) = 2−n+1 cos(nθ) for n ≥ 1,
with x = cos(θ).

The graph of T13:
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The French connection

I assume that I am not the only one, who does not understand
the interest in and significance of these strange problems on
maxima and minima studied by Chebyshev in memoirs whose
titles often begin with “On functions deviating least from
zero...”. Could it be that one must have a slavic soul to
understand the great Russian Scholar?

— H. Lebesgue

This quote is a little bizarre given that, as we’ll see, E. Borel
(Lebesgue’s thesis advisor) made important contributions to
the subject in 1905!
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YouTube

See https://m.youtube.com/watch?v=bU8rDuX4GBU
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The alternation theorem
We say that Pn, a real degree n polynomial, has an alterna-
ting set in E ⊂ R if there exists {xj}n

j=0 ⊂ E with
x0 < x1 < . . . < xn

so that
Pn(xj) = (−1)n−j‖Pn‖E, j = 0, . . . , n.

Theorem (Borel and Markov, independently, 1905)
A Chebyshev polynomial for E has an alternating set in E.
Conversely, if a monic degree n polynomial has an alternating
set in E, then it is the nth Chebyshev polynomial for E.
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Consequences of AT
The alternation theorem implies uniqueness of the Chebyshev
polynomials.
• Suppose Pn and Qn are two distinct minimizers and let

Tn = 1
2(Pn + Qn).

Since ‖Tn‖E ≤ max{‖Pn‖E, ‖Qn‖E}, Tn is also a minimizer.
So Tn has an alternating set in E and we can hence pick
x0 < x1 < . . . < xn in E such that

|Tn(xj)| = ‖Tn‖E for j = 0, 1, . . . , n.

Since |Pn(xj)|, |Qn(xj)| ≤ ‖Tn‖E and 1
2 |Pn(xj) + Qn(xj)| =

|Tn(xj)| = ‖Tn‖E, we have Qn(xj) = Pn(xj) = Tn(xj) for all j .

Thus, Pn − Qn has at least n + 1 zeros and hence Pn = Qn.
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Consequences of AT
The theorem also implies several facts about the zeros of Tn.
For if x0 < x1 < . . . < xn is an alternating set for Tn, then
because of the sign change there must be at least one zero (in
R, not necessarily in E) between xj−1 and xj for j = 1, . . . , n.
As this accounts for all n zeros of Tn, we conclude:

• All the zeros of Tn are real and simple and they lie in cvh(E),
the convex hull of E.

• Each gap of E (i.e., a bounded connected component of R\E)
has at most one zero of Tn.

• At the endpoints of cvh(E), we have that |Tn(x)| = ‖Tn‖E.
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Two intervals

It may happen that Tn has
no zeros in a gap of E.

↓

↑

But due to alternation, it
never has more than one
zero in any gap of E.
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Several intervals
The graph of T10 for E a union of 4 intervals.
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Several intervals
The graph of T10 for E a union of 4 intervals — or only 3?
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Period-n sets
Given an infinite compact set E ⊂ R, we define

En := T−1
n

(
[−tn, tn]

)
, int(En) := T−1

n

(
(−tn, tn)

)
.

and note that we always have E ⊂ En ⊂ cvh(E). In fact:

There exist α1 < β1 ≤ α2 < · · · ≤ αn < βn so that

int(En) =
n⋃

j=1
(αj , βj), En =

n⋃
j=1

[αj , βj ].

Moreover,
α1 and βn belong to E,
on (αj , βj), we have that (−1)n−jT ′n(x) > 0,
for each j ≤ n − 1, at least one of βj and αj+1 lie in E.
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Potential Theory 101
Chebyshev polynomials are intimately connected with 2-dimen-
sional potential theory. So let’s review some of the basics of
that subject.
Given a probability measure dµ of compact support in C, we
define its logarithmic potential by

Φµ(z) =
∫

log |z − w |−1dµ(w)

and its potential (or Coulomb) energy by

E(µ) =
∫
Φµ(z)dµ(z) =

∫∫
log |z − w |−1dµ(w)dµ(z).

Note that E(µ) is either finite or diverges to +∞.
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Capacity
We define the Robin constant of a compact set E ⊂ C by

R(E) = inf{E(µ) | supp(µ) ⊂ E and µ(E) = 1}.

If R(E) =∞, we say E is a polar set or has capacity zero.
If something holds except for a polar set, we say it holds q.e.
(for quasi-everywhere).
Finally, we define the logarithmic capacity of E by

Cap(E) = exp
{
−R(E)

}
.

This is of course that same as R(E) = − log
(
Cap(E)

)
.
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Equilibrium
If E ⊂ C is non-polar, then one can show there is a unique
probability measure dρE with supp(ρE) ⊂ E whose potential
energy is R(E).
This is the so-called equilibrium measure of E.
Existence follows from weak lower semicontinuity of E(·) and
weak compactness of the family of probability measures.
Uniqueness is then a consequence of the fact that E(·) is
strictly convex on the set of probability measures.

The function ΦE(z) =
∫

log |z − w |−1dρE(w) is called the
equilibrium potential and will appear again shortly.
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Harmonic measure
We also refer to dρE as harmonic measure of E (from ∞).
Since E ⊂ C is non-polar, there is a unique solution to the
Dirichlet problem for C \ E. That is,

for any continuous function f : E→ R, there exists a unique
function uf which is harmonic on C \ E and which approaches
f (ζ) for q.e. ζ ∈ E.

The point is now that, in fact, uf (∞) =
∫

E
f (ζ)dρE(ζ).

More generally,
uf (z) =

∫
E
f (ζ)dρE(z , ζ) for all z ∈ C \ E,

where dρE(z , ·) is harmonic measure (from z).
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Green’s function
The Green’s function of a non-polar compact set E ⊂ C is
defined by

gE(z) = R(E)− ΦE(z),
where ΦE is the equilibrium potential (defined previously).
This is the unique function harmonic on C \ E with q.e. boun-
dary value 0 on E and so that gE(z)− log |z | is harmonic at∞.
Moreover, gE(z) ≥ 0 everywhere and near ∞ we have

gE(z) = log |z |+ R(E) +O(1/|z |).

If gE is zero on E and continuous on all of C, we say that the
set E is regular (for potential theory).
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Period-n sets, cont.
Let us define

∆n(z) := 2Tn(z)/‖Tn‖E

so that En is exactly the set where −2 ≤ ∆n(x) ≤ 2 and ∆n
takes values in C \ [−2, 2] on C \ En.

Theorem
The Green’s function of En is given by

gn(z) = 1
n log

∣∣∣∣∣∆n(z)
2 +

√(
∆n(z)

2

)2
− 1

∣∣∣∣∣.
For z near∞, the argument inside log behaves like 2zn/‖Tn‖E.
It thus follows that tn := ‖Tn‖E = 2Cap(En)n.
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Equilibrium measure of En

Since ∆n runs monotonically from −2 to 2 (or vice versa) on
every band of En, we have the following:

Theorem
In each band of En, define θ(x) ∈ [0, π] by

∆n(x) = 2 cos(θ(x)).
Then the equilibrium measure of En is given by

dρn(x) = (πn)−1|θ′(x)|dx .
In particular, each band has ρn-measure 1/n. Moreover, if
ηj is the zero of Tn in [αj , βj ], then both [αj , ηj ] and [ηj , βj ]
have ρn-measure 1/2n.
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Equilibrium measure, cont.

It follows from the explicit formula for the Green’s function
that

−
∫ dρn(x)

x − z = 1
n

∆′n(z)√
∆n(z)2 − 4

.

One can use this to deduce, via the Stieltjes–Perron inversion
formula, that dρn is absolutely continuous on En with respect
to dx and given by

dρn(x)
dx = 1

πn
|∆′n(x)|√
4−∆n(x)2

, x ∈ En.
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Gaps of E
Though it looks innocent, the following result is very useful.

Theorem
Let K be a gap of E (i.e., a bounded connected component
of R \ E). Then ρn(K ) ≤ 1/n.
If Tn has no zero in K , then 1/n can be replaced by 1/2n.
Moreover, K ∩ En is either empty or a single interval.

To see this, recall that K contains at most one band of En.
And if Tn has no zero in K , at most half a band lies in K .
If K ∩ En 6= ∅, it can either be a closed, half open, or open
interval.
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