

Aproximantes de Padé

Bernardo de la Calle Ysern

Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid

Orthonet

Esquema de la lección

- 1. Fracción continua de una función
- 2. Aproximación Padé
- 3. Aproximación simultánea
- 4. Un poco de historia
- 5. Conclusión

Fracción continua de una función

Sea una serie formal (convergente o no)

$$f(z) = b_0(z) + \sum_{n=0}^{\infty} \frac{c_n}{z^{n+1}}, \qquad c_n \in \mathbb{C}.$$

Ejemplos

•
$$\sqrt{z^2-1}$$
, $z \notin [-1,1]$,

•
$$\int_{-1}^{1} \frac{dt}{z-t} = \log\left(\frac{z+1}{z-1}\right), \quad z \notin [-1,1],$$

•
$$\int_0^\infty \frac{e^{-t}}{z+t} dt$$
, $z \notin (-\infty, 0]$.

Sea una serie formal (convergente o no)

$$f(z) = b_0(z) + \sum_{n=0}^{\infty} \frac{c_n}{z^{n+1}}, \qquad c_n \in \mathbb{C}.$$

Entonces

$$f = b_0 + \frac{1}{1/(f - b_0)} = \frac{1}{b_1 + f_1} = \frac{1}{b_1 + \frac{1}{1/f_1}} = \frac{1}{b_1 + \frac{1}{b_2 + f_2}},$$

con deg $b_2 \ge 1$ y f_2 con un desarrollo como el de $f - b_0$.

Por tanto

$$f \sim b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \cdots}}}$$

con deg $b_n \ge 1$ para todo $n \in \mathbb{N}$.

- Sea p_n/q_n el n-ésimo convergente de la fracción continua. Los polinomios p_n y q_n verifican las relaciones de recurrencia de Euler-Wallis y son primos entre sí.
- Además si $s_n = \deg q_n$, entonces

$$s_n = \deg b_1 + \cdots + \deg b_n$$

Se cumple

$$f(z) - rac{p_n(z)}{q_n(z)} = rac{A}{z^{s_n + s_{n+1}}} + \cdots$$
 (El grado de aproximación juega el papel de distancia)

• Si P/Q es una fracción irreducible verificando

$$f(z) - \frac{P(z)}{Q(z)} = \frac{A}{z^{2 \deg Q + 1}} + \cdots,$$
 (Lo usará Gauss para encontrar su cuadratura)

entonces P/Q es un convergente de la fracción continua de f.

• Además son óptimos en el sentido de que si P/Q es una fracción irreducible con deg $Q \le \deg q_n$, entonces

$$q_n(z)f(z)-p_n(z)=\mathcal{O}\left(Q(z)f(z)-P(z)\right),\quad z\to\infty.$$

Se cumple

$$f(z) - rac{p_n(z)}{q_n(z)} = rac{A}{z^{s_n + s_{n+1}}} + \cdots$$
 (El grado de aproximación juega el papel de distancia)

• Si P/Q es una fracción irreducible verificando

$$f(z) - \frac{P(z)}{Q(z)} = \frac{A}{z^{2 \deg Q + 1}} + \cdots$$
, (Lo usará Gauss para encontrar su cuadratura)

entonces P/Q es un convergente de la fracción continua de f.

Los convergentes p_n/q_n son funciones racionales que interpolan de manera óptima a la función f en $z=\infty$

Ejemplo

$$z + \sqrt{z^2 - 1} = 2z - \frac{1}{z + \sqrt{z^2 - 1}}.$$

$$\sqrt{z^2 - 1} \sim z - \frac{1}{2z - \frac{1}{2z - \frac{1}{2z - \cdots}}}$$

Ejemplo

$$z + \sqrt{z^2 - 1} = 2z - \frac{1}{z + \sqrt{z^2 - 1}}.$$

 \Downarrow

• Si $v = z + \sqrt{z^2 - 1}$ entonces v = 2z - 1/v. Por tanto

$$z=\frac{1}{2}\left(v+\frac{1}{v}\right),\quad \sqrt{z^2-1}=z-\frac{1}{v},$$

y $\sqrt{z^2 - 1}$ tiene una expresión racional en la variable v.

• Fórmulas análogas se verifican para $\sqrt{az^2 + bz + c}$.

Teorema

Si R(z, w) es una funcional racional en dos variables complejas, entonces

$$\int R\left(z,\sqrt{az^2+bz+c}\right) dz$$

puede representarse a partir de funciones elementales.

- En general puede ser complicado hallar la fracción continua **completa**. Hace falta encontrar regularidad en el desarrollo.
- Cada método puede dar lugar a fracciones continuas de distinto tipo.
- Euler ideó varios métodos que se basan en expresar mediante fracciones continuas las soluciones de una ecuación diferencial.

$$e^{1/z} \sim 1 + \cfrac{1}{z - 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{3z - 1 + \cdots}}}}$$

- En general puede ser complicado hallar la fracción continua **completa**. Hace falta encontrar regularidad en el desarrollo.
- Cada método puede dar lugar a fracciones continuas de distinto tipo.
- Euler ideó varios métodos que se basan en expresar mediante fracciones continuas las soluciones de una ecuación diferencial.

$$e = [1; 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, \ldots] = [2; 1, 2, 1, 1, 4, 1, 1, 6, \ldots]$$

$$f(z) = \int_0^\infty \frac{e^{-t}}{z+t} \, dt$$

• Integrando por partes repetidamente se obtiene

$$f(z) = \frac{1}{z} - \int_0^\infty \frac{e^{-t}}{(z+t)^2} dt = \frac{1}{z} - \frac{1}{z^2} + 2 \int_0^\infty \frac{e^{-t}}{(z+t)^3} dt$$
$$= \frac{1}{z} - \frac{1}{z^2} + \frac{2!}{z^3} - 3! \int_0^\infty \frac{e^{-t}}{(z+t)^4} dt = \cdots$$

$$f(z) = \int_0^\infty \frac{e^{-t}}{z+t} dt = \sum_{n=0}^\infty \frac{(-1)^n n!}{z^{n+1}}$$

¡serie divergente!

$$f(z) = \int_0^\infty \frac{e^{-t}}{z+t} dt = \sum_{n=0}^\infty \frac{(-1)^n n!}{z^{n+1}}$$

• Usando propiedades de simetría de la función Γ e integración por partes, Euler probó la fórmula

$$f(z) \sim \frac{1}{z + \frac{1}{1 + \frac{1}{z + \frac{2}{z + \cdots}}}}$$

$$f(z) = \int_0^\infty \frac{e^{-t}}{z+t} dt = \sum_{n=0}^\infty \frac{(-1)^n n!}{z^{n+1}}$$

• Que, contrayendo los términos, se transforma en

e, contrayendo los términos, se transforma en
$$f(z) \sim \frac{1}{z+1-\frac{1^2}{z+3-\frac{2^2}{z+5-\frac{4^2}{z+9-\cdots}}}}$$

$$f(z) = \int_0^\infty \frac{e^{-t}}{z+t} dt = \sum_{n=0}^\infty \frac{(-1)^n n!}{z^{n+1}}$$

- Euler (1760) comprobó numéricamente que los valores de la función y los del desarrollo en fracción continua coinciden.
- Veremos más adelante:
 - Stieltjes (1894) demostró la convergencia de la fracción continua para una clase de funciones muy general.
 - Existe relación con polinomios ortogonales.

Gauss

- Gauss perfeccionó un método de Euler para representar cocientes de funciones hipergeométricas en fracción continua.
- Resultan fracciones continuas de la forma

$$a_0 + \frac{a_1 z}{1 + \frac{a_2 z}{1 + \frac{a_3 z}{1 + \cdots}}}.$$

- ullet Se relacionan con las anteriores mediante el cambio z o 1/z y contrayendo a los convergentes pares.
- Por tanto interpolan a la función de manera óptima en z = 0.

Gauss

• El método permite obtener desarrollos en fracción continua de gran número de funciones trascendentes.

Ejemplo

$$\arctan z = \frac{z}{1 + \frac{1z^2}{3 + \frac{4z^2}{5 + \frac{9z^2}{7 + \cdots}}}}.$$

$$\frac{\pi}{4} = \frac{1}{1 + \frac{1^2}{3 + \frac{2^2}{5 + \frac{3^2}{7 + \cdots}}}}$$

Problema (1813)

Encontrar el polinomio $Q_n(z) = \prod_{k=1}^{n} (z - x_k)$ tal que

$$\int_{-1}^{1} p(t) dt = \sum_{k=1}^{n} a_k p(x_k), \quad \deg p < 2n.$$

• Es equivalente a

$$\int_{-1}^{1} t^{m} dt = \frac{1 - (-1)^{m+1}}{m+1} = \sum_{k=1}^{n} a_{k} x_{k}^{m}, \quad m = 0, 1, \dots 2n-1.$$

• Si
$$\delta_m = \frac{1 - (-1)^{m+1}}{m+1} - \sum_{k=1}^n a_k x_k^m$$
, entonces $\delta_m = \mathcal{O}(1)$

$$G(z) \stackrel{\text{(!!)}}{=} \sum_{m=0}^{\infty} \frac{1 - (-1)^{m+1}}{(m+1) z^{m+1}} = \sum_{k=1}^{n} a_k \sum_{n=0}^{\infty} \frac{x_k^m}{z^{m+1}} + \sum_{m=2n}^{\infty} \frac{\delta_m}{z^{m+1}}$$

$$=\sum_{k=1}^n\frac{a_k}{z-x_k}+O\left(\frac{1}{z^{2n+1}}\right).$$

$$Q_n(z) G(z) = P_{n-1}(z) + O\left(\frac{1}{z^{n+1}}\right)$$

• Por tanto Q_n es el denominador del n-ésimo convergente de la fracción continua de G.

$$G(z) = \log\left(\frac{z+1}{z-1}\right) = \frac{2}{z - \frac{1^2}{3z - \frac{2^2}{7z - \cdots}}}$$

- De $Q_{n+1}(z) = (2n+1)zQ_n(z) n^2Q_{n-1}(z)$ se deduce:
 - Los ceros de Q_n se entrelazan con los de Q_{n-1} .
 - Son simples y pertenecen a (-1, 1).

• Jacobi (1826) observó que Q_n es el n-ésimo polinomio ortogonal respecto de la medida de Lebesgue en [-1,1].

¿Qué tiene que ver la medida de Lebesgue con G?

$$G(z) = \log\left(\frac{z+1}{z-1}\right) = \int_{-1}^{1} \frac{dt}{z-t}.$$

Fracciones continuas de transformadas de Cauchy están relacionadas con polinomios ortogonales

Aproximación Padé

Nociones básicas

• Sea el desarrollo formal

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

y \mathcal{P}_n el conjunto de polinomios de grado menor o igual que n.

- El polinomio de Taylor $T_n(f)$ de f es el elemento de \mathcal{P}_n que tiene mayor orden de contacto con f en z = 0.
- Sea $\mathcal{R}_{n,m} = \{p/q : \deg p \le n, \deg q \le m, q \not\equiv 0\}$.
- El aproximante de Padé $\pi_{n,m}(f)$ de f es el elemento de $\mathcal{R}_{n,m}$ que tiene mayor orden de contacto con f en z=0.

Nociones básicas

• Existen polinomios $p_{n,m}$ y $q_{n,m}$ con deg $p_{n,m} \le n$, deg $q_{n,m} \le m$, $q_{n,m} \ne 0$, tales que

$$q_{n,m}(z)f(z)-p_{n,m}(z)=\mathcal{O}\left(z^{n+m+1}\right),\quad z\to 0,$$

y entonces $\pi_{n,m} = p_{n,m}/q_{n,m}$

• Es decir

$$(a_0 + a_1 z + \dots + a_m z^m) (c_0 + c_1 z + \dots + c_{n+m} z^{n+m} + \dots)$$

- $(b_0 + b_1 z + \dots + b_n z^n) = A z^{n+m+1} + \dots$

- \bullet Es un sistema lineal con m ecuaciones y m+1 incógnitas: siempre existe solución no trivial.
- Además la fracción $\pi_{n,m}$ es única.

ullet Los distintos aproximantes de Padé $\pi_{n,m}$ se pueden representar en una tabla

$\pi_{0,0}$	$\pi_{1,0}$	$\pi_{2,0}$	 $\pi_{n,0}$	
$\pi_{0,1}$	$\pi_{1,1}$	$\pi_{2,1}$	 $\pi_{n,1}$	
$\pi_{0,2}$	$\pi_{1,2}$	$\pi_{2,2}$	 $\pi_{n,2}$	
:	:	:	:	
$\pi_{0,m}$	$\pi_{1,m}$	$\pi_{2,m}$	 $\pi_{n,m}$	
:	:	:	:	٠.

cuya estructura refleja los defectos de interpolación.

Dada la condición de interpolación

$$q_{n,m}(z)f(z)-p_{n,m}(z)=\mathcal{O}(z^{n+m+1}), \qquad z\to 0,$$

puede ocurrir que

$$f(z) - \pi_{n,m}(z) = \mathcal{O}(z^{n+m+1-d}), \qquad z \to 0,$$

donde d es el llamado defecto de interpolación.

Ejemplo:
$$f(z) = (1 - z^2)^{-1} = 1 + z^2 + z^4 + \cdots$$

$$\pi_{1,1} \equiv 1 \quad \Longrightarrow \quad \boxed{ egin{array}{c|c} \pi_{0,0} & \pi_{1,0} \\ \hline \pi_{0,1} & \pi_{1,1} \end{array} = \boxed{ egin{array}{c|c} 1 & 1 \\ \hline 1 & 1 \end{array} } \quad rac{\mathrm{j}\pi_{0,0}}{\mathrm{de\ lo\ esperado!}}$$

Estructura por bloques cuadrados

Sea $f(0) \neq 0$. Supongamos que para un (n, m) se cumple

- $\deg p_{n,m} = n$, $\deg q_{n,m} = m$,
- $q_{n,m}(z) f(z) p_{n,m}(z) = A z^{n+m+k+1} + \cdots, A \neq 0, k > 0.$

Entonces $\pi_{n+i,m+j} = \pi_{n,m}$ para todo i, j = 0, 1, ..., k, y el resto de entradas de la tabla son distintas a $\pi_{n,m}$.

- Si $f(z) = z^N g(z)$ con $g(0) \neq 0$, entonces las primeras N columnas de la tabla son cero.
- f es una función racional si y solo si existe un bloque de dimensión infinita.

$\pi_{3,5}$	$\pi_{4,5}$	$\pi_{5,5}$	$\pi_{6,5}$
$\pi_{3,6}$	$\pi_{4,6}$	$\pi_{5,6}$	$\pi_{6,6}$
$\pi_{3,7}$	$\pi_{4,7}$	$\pi_{5,7}$	$\pi_{6,7}$
$\pi_{3,8}$	$\pi_{4,8}$	$\pi_{5,8}$	$\pi_{6,8}$

•
$$f(z) - \pi_{3,5}(z) = A z^{12} + \cdots, A \neq 0.$$

$$\bullet \ d = \min\{n - \deg p_{n,m}, \ m - \deg q_{n,m}\} = 0$$

$\pi_{3,5}$	$\pi_{4,5}$	$\pi_{5,5}$	$\pi_{6,5}$
$\pi_{3,6}$	π 4,6	$\pi_{5,6}$	$\pi_{6,6}$
$\pi_{3,7}$	$\pi_{4,7}$	$\pi_{5,7}$	$\pi_{6,7}$
$\pi_{3,8}$	$\pi_{4,8}$	$\pi_{5,8}$	$\pi_{6,8}$

- $f(z) \pi_{3,5}(z) = A z^{12} + \cdots, A \neq 0.$
- $\bullet \ d = \min\{n \deg p_{n,m}, \ m \deg q_{n,m}\} = 1$

$\pi_{3,5}$	$\pi_{4,5}$	$\pi_{5,5}$	$\pi_{6,5}$
$\pi_{3,6}$	$\pi_{4,6}$	$\pi_{5,6}$	$\pi_{6,6}$
$\pi_{3,7}$	$\pi_{4,7}$	$\pi_{5,7}$	$\pi_{6,7}$
$\pi_{3,8}$	$\pi_{4,8}$	$\pi_{5,8}$	$\pi_{6,8}$

•
$$f(z) - \pi_{3,5}(z) = A z^{12} + \cdots, A \neq 0.$$

$$\bullet \ d = \min\{n - \deg p_{n,m}, \ m - \deg q_{n,m}\} = 2$$

$\pi_{3,5}$	$\pi_{4,5}$	$\pi_{5,5}$	$\pi_{6,5}$
$\pi_{3,6}$	$\pi_{4,6}$	$\pi_{5,6}$	$\pi_{6,6}$
$\pi_{3,7}$	$\pi_{4,7}$	$\pi_{5,7}$	$\pi_{6,7}$
$\pi_{3,8}$	$\pi_{4,8}$	$\pi_{5,8}$	$\pi_{6,8}$

•
$$f(z) - \pi_{3,5}(z) = A z^{12} + \cdots, A \neq 0.$$

$$\bullet \ d = \min\{n - \deg p_{n,m}, \ m - \deg q_{n,m}\} = 3$$

• En general $\pi_{n,m}$ verifica d=0 si y solo si

$$H_{n,m} = \begin{vmatrix} c_n & c_{n-1} & \cdots & c_{n-m+1} \\ c_{n+1} & c_n & \cdots & c_{n-m+2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n+m-1} & c_{n+m-2} & \cdots & c_n \end{vmatrix} \neq 0,$$

ya que entonces $q_{n,m}(0) \neq 0$.

• Si $H_{n,m} \neq 0$ para todo n y m, entonces todos los elementos de la tabla son distintos y se dice que la tabla es normal.

Interpolación en infinito

Sea el desarrollo formal

$$f(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^{n+1}}.$$

Entonces

$$(a_0 + a_1z + \dots + a_nz^n)\left(\frac{c_0}{z} + \frac{c_1}{z^2} + \dots\right)$$
$$= p_{n-1}(z) + \frac{b_1}{z} + \dots + \frac{b_n}{z^n} + \dots$$

• Por tanto el problema de interpolación consiste en encontrar polinomios q_n y p_{n-1} con deg $q_n \le n, q_n \ne 0$, deg $p_{n-1} \le n-1$, tales que

$$q_n(z)f(z)-p_{n-1}(z)=\mathcal{O}\left(\frac{1}{z^{n+1}}\right),\quad z\to\infty.$$

Interpolación en infinito

$$q_n(z)f(z)-p_{n-1}(z)=\mathcal{O}\left(\frac{1}{z^{n+1}}\right),\quad z\to\infty.$$

- El aproximante de Padé diagonal de f en infinito de orden n es la fracción $\pi_n = p_{n-1}/q_n$.
- Solo hay defecto de interpolación si deg $q_n < n$. Cuando deg $q_n = n$ se dice que el aproximante π_n es normal.

$$\iff H_n = \begin{vmatrix} c_0 & c_1 & \cdots & c_n \\ c_1 & c_2 & \cdots & c_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n+1} & \cdots & c_{2n} \end{vmatrix} \neq 0.$$

I Escuela Orthonet

Interpolación en infinito

$$q_n(z)f(z)-p_{n-1}(z)=\mathcal{O}\left(\frac{1}{z^{n+1}}\right),\quad z\to\infty.$$

- El aproximante de Padé diagonal de f en infinito de orden n es la fracción $\pi_n = p_{n-1}/q_n$.
- Solo hay defecto de interpolación si deg $q_n < n$. Cuando deg $q_n = n$ se dice que el aproximante π_n es normal.
- Siempre se cumple

$$f(z) - rac{p_{n-1}(z)}{q_n(z)} = \mathcal{O}\left(rac{1}{z^2 \deg q_{n+1}}
ight), \quad z o \infty.$$

Interpolación en infinito

$$q_n(z)f(z)-p_{n-1}(z)=\mathcal{O}\left(\frac{1}{z^{n+1}}\right),\quad z\to\infty.$$

- El aproximante de Padé diagonal de f en infinito de orden n es la fracción $\pi_n = p_{n-1}/q_n$.
- Solo hay defecto de interpolación si deg $q_n < n$. Cuando deg $q_n = n$ se dice que el aproximante π_n es normal.

Los convergentes de la fracción continua de *f* coinciden con los aproximantes de Padé diagonales de *f*

Ejemplo

$$f(z) = \log(1+z)$$

- T_n converge uniformemente a f en compactos de $\{|z| < 1\}$.
- $\pi_{n,n}$ converge uniformemente a f en compactos de

$$\mathbb{C}\setminus(-\infty,-1]$$
.

Los aproximantes de Padé pueden recuperar la función a partir de los coeficientes de Taylor

- Si en un entorno de z₀
 - (i) f se aproxima rápidamente por polinomios $\Longrightarrow f$ es entera.
- (ii) f se aproxima rápidamente por funciones racionales $\Longrightarrow f$ es univaluada.

Los aproximantes de Padé proporcionan información global de datos locales

Wallin (1974)

Existen funciones enteras cuyos aproximantes de Padé divergen en todo punto del plano complejo.

No hay resultados generales de convergencia debido a la posible aparición de polos espurios

Gonchar (1982)

Sea f analítica en un dominio $D \supset \infty$ cuyo complemento es un conjunto convexo. Supongamos que, para todo $n \ge N$,

- π_n es holomorfa en el dominio D.
- No hay defecto de interpolación.

Entonces π_n converge a f uniformemente en subconjuntos compactos de D.

Estrategias

- Debilitar la sucesión: tomar subsucesiones.
- Debilitar la clase de funciones f que se aproximan: funciones de Markov, Stieltjes,...
- Debilitar la convergencia: convergencia en capacidad.
- ullet Dejar fijo el grado del denominador: si $m\in\mathbb{N}$ queda fijo,

¿bajo qué condiciones
$$\lim_{n \to +\infty} \pi_{n,m} = f$$
?

Conjetura de Baker-Gammel-Wills (1961)

Sea f es meromorfa en el disco unidad \mathbb{D} . Entonces existe una subsucesión $\Lambda \subset \mathbb{N}$ tal que $\pi_n, n \in \Lambda$, converge a f uniformemente en compactos de \mathbb{D} (en la métrica de la esfera de Riemann).

- Siempre hay subsucesiones de π_n sin defecto de interpolación.
- En muchos ejemplos π_n admite subsucesiones que convergen a f uniformemente en compactos del dominio.

I Escuela Orthonet

- Variantes:
 - · Convergencia en capacidad (se verá más adelante).
 - f es algebraica y el dominio es extremal (idem).
 - Exigiendo acotación uniforme del número de polos espurios.

Avances:

- Funciones hiperelípticas: $f = r_1 + r_2\sqrt{p}$, p polinomio, con restricciones sobre polos y ceros de r_1 y r_2 (Stahl).
- Funciones enteras de crecimiento lento (Lubinski):

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{con} \quad \limsup_{n \to \infty} \sqrt[n^2]{|a_n|} < 1.$$

• La conjetura fue **refutada** por Lubinski en 2001 usando la fracción continua de Rogers-Ramanujan:

$$1 + \frac{qz}{1 + \frac{q^2z}{1 + \frac{q^3z}{1 + \cdots}}}, \qquad q = e^{\frac{4\pi i}{99 + \sqrt{5}}}.$$

• Un año más tarde Buslaev encontró un contraejemplo relativamente sencillo con una función hiperelíptica

$$\frac{z}{3-3\alpha^2z+\frac{\alpha z^2}{3-3\alpha^4z+\frac{\alpha^2z^2}{3-3\alpha^6z+\cdots}}}, \qquad \alpha=-\frac{1}{2}+i\frac{\sqrt{3}}{2},$$

que refutaba la mayor parte de las conjeturas conocidas.

Conjetura de la convergencia a trozos (2005)

Análoga a la conjetura Padé, pero utilizando varias subsucesiones dependiendo de $z \in \mathbb{D}$.

Otros tipos de Padé

- Aproximantes de Padé multipuntuales. Se interpola en una tabla de puntos con una cierta distribución límite.
- Aproximantes tipo Padé. Parte o todos de los polos de los aproximantes se fijan de antemano. Útil cuando se conoce la geometría del conjunto de singularidades de la función.
- Aproximantes Fourier-Padé. Se consideran desarrollos ortogonales y se busca el aproximante racional que tenga el mayor orden de contacto según este desarrollo.
- Aproximantes Hermite-Padé. Aproximación simultánea de funciones.

I Escuela Orthonet

Aproximación simultánea

Otra forma de probar trascendencia

Teorema

Sea $x \in \mathbb{R}$ y supongamos que para todo $r \in \mathbb{N}$ y todo $(c_0, c_1, \ldots, c_r) \in \mathbb{Z}^{r+1}$ existen r sucesiones de números racionales

$$\left\{\frac{p_{n,1}}{q_n}\right\}, \left\{\frac{p_{n,2}}{q_n}\right\}, \ldots, \left\{\frac{p_{n,r}}{q_n}\right\}$$

tales que

i)
$$c_0 q_n + \sum_{k=1}^r c_k p_{n,k} \neq 0, \quad \forall n \in \mathbb{N}.$$

ii)
$$\lim_{n\to\infty} q_n x^k - p_{n,k} = 0$$
, $k = 1, 2, \dots, r$.

Entonces x es un número trascendente.

Otra forma de probar trascendencia

• La idea es aproximar el número real x y sus potencias por sucesiones que tengan el mismo denominador. Este tipo de aproximación se llama simultánea.

Aproximación simultánea rápida por números racionales implica trascendencia

• ¿Cómo construir sucesiones de números racionales que aproximen simultáneamente las potencias de un número real?

Aproximación Hermite-Padé

- Sean $|f_1, f_2, \dots, f_r| r$ desarrollos formales en z = 0.
- Se fijan $\mathbf{n} = (n_1, \dots, n_r), \ \mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_+^r$ que controlan la interpolación en cada componente.
- Entonces existen P_1, \ldots, P_r y Q con deg $P_k \le n_k$ y deg $Q \le |\mathbf{m}|$, $Q \not\equiv 0$, tales que

$$Q(z)f_k(z) - P_k(z) = \mathcal{O}\left(z^{n_k+m_k+1}\right), \quad z \to 0,$$

donde
$$|\mathbf{m}| = m_1 + m_2 + \cdots + m_r$$
 y $k = 1, ..., r$.

• $P_1/Q, ..., P_r/Q$ son los aproximantes Hermite-Padé de los desarrollos $f_1, ..., f_r$.

Aproximación Hermite-Padé

- Los aproximantes Hermite-Padé **no** están en general unívocamente determinados (por ejemplo si $f_1 = f_2$).
- El problema de la convergencia y el del comportamiento de sus polos es mucho más rico y complejo.
- Cuando los aproximantes Hermite-Padé están unívocamente determinados y los polinomios correspondientes tienen grado máximo se dice que son normales.

Hermite

Hermite (1873)

El número e es trascendente.

- Halla explicitamente los aproximantes Hermite-Padé de las funciones $\{e^{kz}\}_{k=1}^r$ para unos ciertos grados de interpolación que dependen de un parámetro libre p, número primo.
- Después evalúa las funciones obtenidas en z=1 para obtener una aproximación racional de las potencias del número e.
- El hecho de que *p* sea primo y arbitrariamente grande le permite garantizar las condiciones i) y ii).

I Escuela Orthonet

 \bullet Existen polinomios Q y P_k tales que

$$Q(z) e^{kz} - P_k(z) = \mathcal{O}(z^{rp+p}), \quad z \to 0,$$

con deg $Q \le rp$, deg $P_k \le rp - 1$, k = 1, ..., r.

• Para construirlos observemos que de la fórmula

$$\int_0^\infty x^k \, e^{-zx} \, dx = \frac{k!}{z^{k+1}}, \qquad k \in \mathbb{Z},$$

se deduce que si T es un polinomio de grado n, $T(0) \neq 0$, entonces

$$z^{n+k+1}\int_0^\infty x^k T(x) e^{-zx} dx$$

es también un polinomio de grado n.

• Existen polinomios Q y P_k tales que

$$Q(z) e^{kz} - P_k(z) = \mathcal{O}(z^{rp+p}), \quad z \to 0,$$

con deg $Q \le rp$, deg $P_k \le rp - 1$, k = 1, ..., r.

• Por tanto, si se elige $T(x) = x^{p-1} \prod_{k=1}^{n} (x-k)^p$, $p \in \mathbb{N}$, los polinomios

$$Q(z) = \lambda z^{rp+p} \int_0^\infty T(x) e^{-zx} dx,$$

$$P_k(z) = \lambda z^{rp+p} \int_0^\infty T(x+k) e^{-zx} dx, \quad \lambda > 0,$$

tienen los grados requeridos.

I Escuela Orthonet

• Existen polinomios Q y P_k tales que

$$Q(z) e^{kz} - P_k(z) = \mathcal{O}(z^{rp+p}), \quad z \to 0,$$

con deg $Q \le rp$, deg $P_k \le rp - 1$, k = 1, ..., r.

Además

$$Q(z) e^{kz} - P_k(z) = \lambda z^{rp+p} e^{kz} \int_0^k T(x) e^{-zx} dx = \mathcal{O}\left(z^{rp+p}\right),$$

por lo que se verifican las condiciones de interpolación Hermite-Padé.

- Fijamos un $(c_0, c_1, ..., c_r) \in \mathbb{Z}^{r+1}$ y tomamos z = 1 y $\lambda = 1/(p-1)!$, con p suficientemente grande para que no pueda ser divisor de c_0 .
- Entonces se obtienen las sucesiones de números enteros

$$q_n = \frac{1}{(p-1)!} \int_0^\infty T(x) e^{-x} dx,$$

$$p_{n,k} = \frac{1}{(p-1)!} \int_0^\infty T(x+k) e^{-x} dx.$$

• El número primo p divide a los $p_{n,k}$ pero no a q_n por lo que se cumple la condición i).

- Fijamos un $(c_0, c_1, ..., c_r) \in \mathbb{Z}^{r+1}$ y tomamos z = 1 y $\lambda = 1/(p-1)!$, con p suficientemente grande para que no pueda ser divisor de c_0 .
- Entonces se obtienen las sucesiones de números enteros

$$q_n = \frac{1}{(p-1)!} \int_0^\infty T(x) e^{-x} dx,$$

$$p_{n,k} = \frac{1}{(p-1)!} \int_0^\infty T(x+k) e^{-x} dx.$$

La condición ii) se deduce de

$$\left|q_n e^k - p_{n,k}\right| = \frac{e^k}{(p-1)!} \int_0^k |T(x)| e^{-x} dx \le \frac{e^k}{(p-1)!} k^{rp+p-1}.$$

No me aventuraré a la búsqueda de una demostración de la trascendencia del número π . Que otros intenten esa empresa, nadie será más feliz que yo de su éxito. Pero créame, amigo mío, que no les costará poco esfuerzo.

Ch. Hermite*

^{*}Extrait d'une lettre de M. Ch. Hermite a M. Borchardt sur quelques aproximations algébriques, J. Reine Angew. Math. **76** (1873) 342–344.

Lindemann

Lindemann (1882)

Sean $\beta_1, \beta_2, \dots, \beta_m$ números algebraicos distintos. Entonces $e^{\beta_1}, e^{\beta_2}, \dots, e^{\beta_m}$ son l. i. sobre \mathbb{A} .

- $e^{\pi i} + e^0 = 0 \Rightarrow \pi$ es trascendente.
- Si $\beta \neq 0$ y a son algebraicos $\Rightarrow e^{\beta} + ae^{0} \neq 0 \Rightarrow e^{\beta}$ es trascendente.
- Si $\beta \neq 0$ es algebraico \Rightarrow sen β , senh β , . . . son trascendentes.

I Escuela Orthonet

Lindemann

Lindemann (1882)

Sean $\beta_1, \beta_2, \dots, \beta_m$ números algebraicos distintos. Entonces $e^{\beta_1}, e^{\beta_2}, \dots, e^{\beta_m}$ son l. i. sobre \mathbb{A} .

- $e^{\pi i} + e^0 = 0 \Rightarrow \pi$ es trascendente.
- Si $\beta \neq 0$ y a son algebraicos $\Rightarrow e^{\beta} + ae^{0} \neq 0 \Rightarrow e^{\beta}$ es trascendente.
- Si $\beta \neq 0$ es algebraico \Rightarrow sen β , senh β , . . . son trascendentes.

Funciones trascendentes toman valores trascendentes en argumentos algebraicos "no especiales"

Un poco de historia

- Problemas clásicos de la Antigüedad:
 - · La trisección del ángulo.
 - La duplicación del cubo.
 - · La cuadratura del círculo.
- Antecedentes:
 - Magnitudes inconmensurables.
 - Construcciones con regla y compás.

Números constructibles o euclídeos son aquellos que se pueden construir mediante el uso combinado de la regla y el compás a partir de una magnitud unitaria. Los denotaremos por E.

Dificultades:

- No todo número real es constructible: $\mathbb{R} \not\subset \mathbb{E}$.
- Carencia de nociones algebraicas.

Números constructibles o euclídeos son aquellos que se pueden construir mediante el uso combinado de la regla y el compás a partir de una magnitud unitaria. Los denotaremos por E.

Son aquellos números que se obtienen a partir de \mathbb{Q} mediante las operaciones de cuerpo y extracción de raíces cuadradas

 \bullet El polinomio mínimo de un número constructible tiene grado 2^m .

L Escuela Orthonet

Wantzel (1837)

Imposibilidad de la duplicación del cubo y la trisección del ángulo:

- El polinomio $x^3 2$ es irreducible de grado 3.
- Si $\pi/3$ se pudiera trisecar, entonces $2\cos(\pi/9)$ sería constructible y es raíz de $x^3 3x 1$, polinomio irreducible de grado 3.
- Hubo que esperar a la demostración de que π es trascendente para deducir la imposibilidad de la cuadratura del círculo. (Véase, por ejemplo, http://gaussianos.com/comodemostrar-que- π -pi-es-trascendente/)

I Escuela Orthonet

Trascendencia en el siglo XX

• En 1900 Hilbert plantea veintitrés problemas, el séptimo dice:

Sea α un número algebraico distinto de 0 y 1. Sea β un número algebraico irracional. Demostrar que α^{β} es trascendente.

Gelfond (1934) y Schneider (1935)

Resuelven el séptimo problema de Hilbert.

ullet En particular, e^{π} es trascendente pues

$$e^{\pi} = i^{-2i}$$

Trascendencia en el siglo XX

Baker (1966)

Sean $\alpha_1, \alpha_2, \ldots, \alpha_m$ números algebraicos distintos de 0 y 1. Sean $1, \beta_1, \beta_2, \ldots, \beta_m$ números algebraicos l. i. sobre $\mathbb Q$. Entonces

$$\alpha_1^{\beta_1} \alpha_2^{\beta_2} \cdots \alpha_m^{\beta_m}$$
 es trascendente.

- No se sabe si π^{π} , e^{e} ó π^{e} son trascendentes. Tampoco se sabe si πe ó $\pi + e$ son trascendentes aunque sí se sabe que al menos uno de ellos lo es.
- No se sabe si π y e son algebraicamente independientes sobre \mathbb{Q} , es decir, si existe un polinomio $P \in \mathbb{Q}[x, y]$ tal que $P(\pi, e) = 0$.

L Escuela Orthonet

• La función zeta de Riemann se define como

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}, \quad \text{si} \quad \Re z > 1,$$

y mediante continuación analítica en $\mathbb{C} \setminus \{1\}$.

ullet Euler probó que $egin{aligned} \zeta(2k) = q_k \, \pi^{2k}, & q_k \in \mathbb{Q} \end{aligned}$

Problema abierto

Demostrar que los números $\zeta(2k+1), k \in \mathbb{N}$, son irracionales.

Apéry (1978)

El número $\sum_{n=1}^{\infty} \frac{1}{n^3}$ es irracional.

• Usa la fórmula

$$\sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3} \left[\binom{2n}{n} \right]^{-1}.$$

La demostración no es generalizable al caso de otros valores del exponente.

- **Beukers (1981):** La sucesión de aproximantes racionales de Apéry puede obtenerse de un problema generalizado de aproximación de Padé simultánea.
- Dadas las funciones

$$f_k(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^k}, \quad k = 1, 2, 3,$$

encontrar polinomios p_n , t_n , q_n y r_n de grado n tales que

$$q_n(z) f_1(z) + r_n(z) f_2(z) - p_n(z) = o(z^{2n}), \quad z \to 0,$$

 $q_n(z) f_2(z) + 2 r_n(z) f_3(z) - t_n(z) = o(z^{2n}), \quad z \to 0,$
 $q_n(1) = 0.$

Rivoal (2000)

En el conjunto $\{\zeta(3), \zeta(5), \zeta(7), \dots\}$ hay infinitos números irracionales.

• Utiliza aproximación simultánea de Padé de polilogaritmos:

$$\sum_{n=0}^{\infty} \frac{z^n}{(n+1)^p}.$$

Zudilin (2001)

Al menos uno de entre los números $\zeta(5)$, $\zeta(7)$, $\zeta(9)$ y $\zeta(11)$ es irracional.

Conclusión

Algunas ideas importantes para recordar

- Los aproximantes de Padé tienen sus orígenes en las fracciones continuas y la aproximación simultánea.
- Su versatilidad les permite adaptarse a diferentes situaciones.
- El problema de la convergencia de los Padé es el problema del comportamiento de sus polos y cómo controlarlos.
- Estudiaremos con más detalle aquellos casos en que los denominadores son polinomios ortogonales.

Bibliografía

- Jones, Morris y Pearson, Abstract Algebra and Famous Impossibilities, Springer-Verlag, New York 1991.
- Jones y Thron, Continued Fractions. Analytic Theory and Applications, Cambridge University Press, Cambridge 1980.
- **Klein**, Matemática elemental desde un punto de vista superior, 1, Nivola, Madrid 2006.
- **Wall**, Analytic Theory of Continued Fractions, AMS, Providence, RI 2000.

L Escuela Orthonet