

Ortogonalidad

Bernardo de la Calle Ysern

Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid

Orthonet

Esquema de la lección

- 1. Polinomios ortogonales
- 2. Fórmulas de cuadratura
- 3. Transformadas de Cauchy
- 4. Problema de momentos determinado
- 5. Propiedades asintóticas
- 6. Conclusión

Polinomios ortogonales

Definiciones

- ullet Sea Σ un subconjunto cerrado del plano complejo.
- ullet Sea μ una medida de Borel positiva con soporte en Σ que conste al menos de una cantidad numerable de puntos.
 - Si Σ no está acotado supondremos que

$$\int_{\Sigma} |z|^n d\mu(z) < +\infty, \qquad n = 0, 1, \dots$$

La medida induce el producto interior

$$\langle f,g \rangle = \int_{\Sigma} f(z) \overline{g(z)} \, d\mu(z), \qquad f,g \in L^2(\mu),$$

que convierte el espacio $L^2(\mu)$ en un espacio de Hilbert.

Definiciones

• La familia $\{1, z, \dots, z^n, \dots\}$ es l.i. en $L^2(\mu)$ y mediante el proceso de ortogonalización de Gram-Schmidt se obtiene la sucesión de polinomios ortonormales

$$q_n(z) = \gamma_n z^n + \cdots, \quad \gamma_n > 0, \ n = 0, 1, \ldots$$

ullet El polinomio ortogonal mónico se denota mediante \widehat{q}_n .

Uno de los problemas principales de la teoría es relacionar las propiedades de los polinomios ortogonales y las propiedades de la medida correspondiente

Problema de momentos

• Si $\Sigma \subset \mathbb{R}$ (también si $\Sigma \subset \mathbb{T}$) los polinomios ortogonales pueden construirse a partir de un funcional de momentos

$$\Lambda(x^n) = c_n \in \mathbb{R}, \qquad n = 0, 1, \dots$$

ullet Un funcional de momentos Λ es definido positivo en Σ si para todo polinomio p no nulo se cumple

$$p(x) \ge 0, \ x \in \Sigma \implies \Lambda(p) > 0.$$

• Dada una sucesión $\{c_n\}$ el problema de momentos consiste en averiguar si existe una medida μ soportada en Σ tal que

$$c_n = \int_{\Sigma} x^n d\mu(x), \qquad n = 0, 1, \dots$$

Problema de momentos

La existencia de la medida es equivalente a que el funcional de momentos sea definido positivo

- Se buscan entonces condiciones computables sobre los momentos para que el funcional sea definido positivo.
- El problema de momentos es determinado si la solución es única, lo que ocurre por ejemplo si $\Sigma = [a,b]$ o $\Sigma = \mathbb{T}$. En otros casos se buscan condiciones sobre los momentos que garantizen que el problema es determinado.

Problema de momentos

La existencia de la medida es equivalente a que el funcional de momentos sea definido positivo

Para extraer información de la medida a partir de los polinomios ortogonales se necesita que el problema de momentos esté determinado

I Escuela Orthonet

Extremalidad

Extremalidad de los polinomios ortogonales

$$\|\widehat{q}_n\|_{L^2(\mu)}^2 = \min_{p(z)=z^n+\cdots} \|p\|_{L^2(\mu)}^2 = \frac{1}{\gamma_n^2}.$$

(Da información sobre la densidad de μ)

Los ceros de los polinomios ortogonales tienden a contrarrestar la densidad de la medida

Extremalidad

Extremalidad de los polinomios ortogonales

$$\|\widehat{q}_n\|_{L^2(\mu)}^2 = \min_{p(z) = z^n + \dots} \|p\|_{L^2(\mu)}^2 = \frac{1}{\gamma_n^2}.$$

(Da información sobre la densidad de μ)

• Se llama núcleo reproductor a la expresión

$$K_n(z, w) = \sum_{k=0}^n q_k(z) \overline{q_k(w)}.$$

• El núcleo reproductor proporciona el desarrollo ortogonal n-ésimo de una función mediante la expresión

$$S_n(f) = \int_{\Sigma} f(w) K_n(z, w) d\mu(w), \quad f \in L^2(\mu).$$

Extremalidad

Extremalidad de los polinomios ortogonales

$$\|\widehat{q}_n\|_{L^2(\mu)}^2 = \min_{p(z)=z^n+\cdots} \|p\|_{L^2(\mu)}^2 = \frac{1}{\gamma_n^2}.$$

(Da información sobre la densidad de μ)

Extremalidad del núucleo reproductor

$$\min_{\deg p \le n, \ p(z)=1} \|p\|_{L^2(\mu)}^2 = \frac{1}{K_n(z, z)}$$

y el mínimo se alcanza con el polinomio $\frac{K_n(w,z)}{K_n(z,z)}$.

(Da información sobre la densidad de μ cerca de z)

• Se llama función de Christoffel al valor extremal anterior. Es decir

$$\lambda_n(z) = \frac{1}{K_n(z,z)}, \qquad n = 0, 1, \dots$$

• Como λ_n es decreciente, siempre existe

$$\lambda(z) = \lim_{n \to \infty} \lambda_n(z) \in [0, +\infty]$$

y se puede escribir

$$\lambda(z) = \frac{1}{\sum_{k=0}^{\infty} |q_k(z)|^2} = \inf_{p(z)=1} ||p||_{L^2(\mu)}^2$$

• Se llama función de Christoffel al valor extremal anterior. Es decir

$$\lambda_n(z) = \frac{1}{K_n(z,z)}, \qquad n = 0, 1, \dots$$

La función de Christoffel contiene mucha información sobre la medida y el problema de momentos

• Se llama función de Christoffel al valor extremal anterior. Es decir

$$\lambda_n(z) = \frac{1}{K_n(z,z)}, \qquad n = 0, 1, \dots$$

Teorema de Szegő

Si
$$\Sigma=\mathbb{T}$$
 y $d\mu(\theta)=\mu'(\theta)\,rac{d heta}{2\pi}+\mu_{ extsf{S}}(heta)$, se cumple

$$\lambda(0) = \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \log \mu'(\theta) d\theta\right\}.$$

• Se escribe $\mu \in \mathbf{S}$ (clase de Szegő) si $\lambda(0) > 0$.

Teorema

Si $\Sigma = \mathbb{T}$, entonces

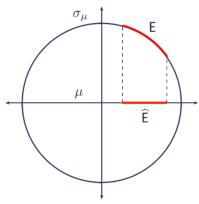
$$\lambda(z) = \mu\{z\}, \qquad |z| \ge 1.$$

Teorema de Maté, Nevai y Totik

Si $\Sigma = \mathbb{T}$ y $\mu \in \mathbf{S}$, entonces

$$\lim_{n\to\infty} n\lambda_n(e^{i\theta}) = \mu'(\theta), \quad \text{c.t.p. } [0,2\pi].$$

• Dada una medida μ soportada en [-1,1] puede definirse por proyección una medida asociada σ_{μ} con soporte en \mathbb{T} .



• Dado un boreliano E se define

$$\sigma_{\mu}(\mathsf{E}) = \mu(\widehat{\mathsf{E}}),$$

y se define de modo consistente cuando E forma parte de los dos hemisferios.

• Se tiene $\|\sigma_{\mu}\| = 2\|\mu\|$.

• Para toda función f continua en [-1, 1] se cumple

$$\frac{1}{2\pi} \int_0^{2\pi} f(\cos \theta) \, d\sigma_{\mu}(\theta) = \frac{1}{\pi} \int_{-1}^1 f(x) \, d\mu(x).$$

 $\sigma'_{\mu}(\theta) = \mu'(\cos\theta)|\sin\theta| = \mu'(x)\sqrt{1-x^2}$

$$\frac{d\theta}{2\pi} \longleftrightarrow \frac{dx}{\pi\sqrt{1-x^2}}$$

• Para toda función f continua en [-1, 1] se cumple

$$\frac{1}{2\pi} \int_0^{2\pi} f(\cos \theta) \, d\sigma_{\mu}(\theta) = \frac{1}{\pi} \int_{-1}^1 f(x) \, d\mu(x).$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\sigma'_{\mu}(\theta) = \mu'(\cos \theta) |\sin \theta| = \mu'(x) \sqrt{1 - x^2}$$

• Se escribe
$$\mu \in \mathbf{S}$$
 si $\sigma_{\mu} \in \mathbf{S}$ \iff $\int_{-1}^{1} \frac{\log \mu'(x)}{\sqrt{1-x^2}} \, dx > -\infty.$

• Para toda función f continua en [-1, 1] se cumple

$$\frac{1}{2\pi} \int_0^{2\pi} f(\cos \theta) \, d\sigma_{\mu}(\theta) = \frac{1}{\pi} \int_{-1}^1 f(x) \, d\mu(x).$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\sigma'_{\mu}(\theta) = \mu'(\cos \theta) |\sin \theta| = \mu'(x) \sqrt{1 - x^2}$$

• Existen relaciones explícitas entre los correspondientes polinomios ortogonales.

• Para toda función f continua en [-1, 1] se cumple

$$\frac{1}{2\pi}\int_0^{2\pi} f(\cos\theta)\,d\sigma_\mu(\theta) = \frac{1}{\pi}\int_{-1}^1 f(x)\,d\mu(x).$$

$$\sigma'_{\mu}(\theta) = \mu'(\cos\theta)|\sin\theta| = \mu'(x)\sqrt{1-x^2}$$

La estructura del círculo es más rica en herramientas analíticas, lo que permite probar resultados que luego se trasladan al intervalo

(No en el caso de los polinomios clásicos)

De nuevo la función de Christoffel

Teorema

Si $\Sigma = [-1, 1]$, entonces

$$\lambda(z) = \mu\{z\}, \qquad z \in \mathbb{C}.$$

Teorema de Maté, Nevai y Totik

Si
$$\Sigma = [-1, 1]$$
, $\mu \in \mathbf{S}$ y $d\mu(x) = w(x) \frac{dx}{\pi \sqrt{1 - x^2}} + \mu_s(x)$, entonces

$$\lim_{n\to\infty} n\lambda_n(x) = w(x), \qquad \text{c.t.p. } [-1,1].$$

Fórmulas de cuadratura

• Sea $t_n(x) = \prod_{i=1}^n (x - x_i)$ un polinomio con raíces reales simples. El polinomio fundamental de Lagrange es

$$L_{n,i}(x) = \frac{t_n(x)}{t'_n(x_i)(x-x_i)}, \quad i = 1, \ldots, n,$$

que cumple $L_{n,i}(x_k) = \delta_{ik}, i, k = 1, \dots, n$.

• Dada cualquier función f definida en los ceros de t_n , el polinomio interpolador de Lagrange de f es

$$L_n(x) = \sum_{i=1}^n f(x_i) L_{n,i}(x)$$

que cumple $L_n(x_k) = f(x_k), k = 1, ..., n$.

Dada la integral

$$I[f] = \int_{\Sigma} f(x) d\mu(x), \qquad \Sigma \subset \mathbb{R},$$

una fórmula de cuadratura con n nodos

$$I_n[f] = \sum_{i=1}^n \lambda_i f(x_i), \qquad x_i \in \Sigma,$$

se llama interpolatoria si es exacta en

$$\mathcal{P}_{n-1} = \{p : \deg p \le n-1\}.$$

Es decir, si $I[p] = I_n[p]$ para todo p con deg $p \le n - 1$.

• Dados n nodos $\{x_1, \ldots, x_n\}$ siempre se puede construir una cuadratura interpolatoria eligiendo de modo adecuado los coeficientes (pesos) de la fórmula.

Teorema

La fórmula de cuadratura I_n es interpolatoria si y sólo si

$$\lambda_i = I_n[L_{n,i}] \iff I_n[f] = I_n[L_n(f)] \quad \forall f$$

• Dados n nodos $\{x_1, \ldots, x_n\}$ siempre se puede construir una cuadratura interpolatoria eligiendo de modo adecuado los coeficientes (pesos) de la fórmula.

Teorema de Pólya

Sean $\Sigma = [a, b]$ y $\{I_n\}$ una sucesión de cuadraturas interpolatorias con pesos $\{\lambda_{n,i}\}$. Entonces son equivalentes:

- $\lim_{n\to\infty} I_n[f] = I[f]$ para toda $f \in \mathcal{C}[a,b]$.
- $\sum_{i=1}^{n} |\lambda_{n,i}| \leq M$ para todo $n \in \mathbb{N}$.

I Escuela Orthonet

• Dados n nodos $\{x_1, \ldots, x_n\}$ siempre se puede construir una cuadratura interpolatoria eligiendo de modo adecuado los coeficientes (pesos) de la fórmula.

Teorema de Stieltjes-Steklov

Sean $\Sigma = [a,b]$ y $\{I_n\}$ una sucesión de cuadraturas interpolatorias con pesos positivos. Entonces para toda función acotada e integrable Riemann-Stieltjes se cumple

$$\lim_{n\to\infty}I_n[f]=I[f].$$

• Dados n nodos $\{x_1, \ldots, x_n\}$ siempre se puede construir una cuadratura interpolatoria eligiendo de modo adecuado los coeficientes (pesos) de la fórmula.

Cuadratura de Clenshaw-Curtis

Sea $\Sigma = [-1,1]$ y $d\mu(x) = dx$. La cuadratura interpolatoria CC_n con nodos en los extremos de los polinomios de Chebyshev más los puntos extremos, es decir, en los puntos

$$\cos\left(\frac{k-1}{n-1}\pi\right), \qquad k=1,2,\ldots,n,$$

tiene todos sus pesos positivos.

• Dados n nodos $\{x_1, \ldots, x_n\}$ siempre se puede construir una cuadratura interpolatoria eligiendo de modo adecuado los coeficientes (pesos) de la fórmula.

Que los pesos sean positivos implica convergencia de las cuadraturas y estabilidad numérica

• Para conseguir mayor grado de exactitud en la cuadratura es necesario elegir los nodos adecuadamente.

Teorema

Si t_n denota el polinomio nodal y k = 1, 2, ..., n, entonces

$$I_n$$
 es exacta en $\mathcal{P}_{n+k-1} \iff \left\{ egin{array}{l} ext{(i)} \ I_n ext{ es interpolatoria} \ \ ext{(ii)} \ \langle t_n,p
angle = 0 \ \ orall p \in \mathcal{P}_{k-1} \ \end{array}
ight.$

• El mayor grado de exactitud se alcanza para k = n que corresponde a la cuadratura gaussiana G_n .

I Escuela Orthonet

• Los coeficientes de la cuadratura gaussiana G_n reciben el nombre de coeficientes de Christoffel ya que cumplen

$$\lambda_{n,i} = \lambda_n(\mathbf{x}_{n,i})$$

Ley del semicirculo (Se deduce de Máté-Nevai-Totik)

Si $\Sigma = [-1, 1]$ y $\mu \in \mathbf{S}$, entonces

$$\lim_{n\to\infty}\frac{n\lambda_{n,i}}{\pi\mu'(\mathbf{x}_{n,i})}=\sqrt{1-\mathbf{x}_{n,i}^2}.$$

¿Qué ocurre cuando el intervalo de integración no está acotado?

ullet Puede probarse que el valor de la cuadratura gaussiana converge al valor de una integral correspondiente a una medida con los mismos momentos que μ .

¿Qué ocurre cuando el intervalo de integración no está acotado?

Teorema

Si $\Sigma=\mathbb{R}$ y el problema de momentos para la medida μ está determinado, entonces

$$\lim_{n\to\infty}G_n[f]=I[f]$$

para toda función f continua en $\mathbb R$ que se anula en infinito.

Transformadas de Cauchy

Funciones de Markov y Stieltjes

ullet Se define la transformada de Cauchy de la medida μ como la función

$$\widehat{\mu}(z) = \int_{\Sigma} \frac{d\mu(x)}{z - x}, \qquad z \not\in \Sigma.$$

- La función $\widehat{\mu}$ es analítica en $\overline{\mathbb{C}} \setminus \Sigma$ y se suele llamar función de Markov si Σ está acotado o de Stieltjes si no lo está.
- La función $\widehat{\mu}$ admite el desarrollo

$$\widehat{\mu}(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^{n+1}}$$

donde $\{c_n\}$ son los momentos de la medida μ .

Aproximantes de Padé

• Si q_n es el n-ésimo polinomio ortonormal respecto a la medida μ , se define el polinomio de segundo tipo p_{n-1} como

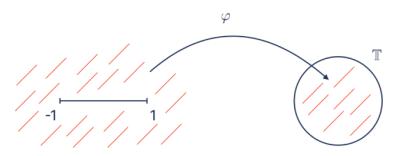
$$p_{n-1}(z) = \int_{\Sigma} \frac{q_n(z) - q_n(x)}{z - x} d\mu(x).$$

- Propiedades: (Ejercicios sencillos)
 - p_{n-1} es un polinomio de grado a lo más n-1.
 - p_{n-1}/q_n es π_n , el aproximante diagonal de Padé de $\widehat{\mu}$.
 - Si $\lambda_{n,i}$ son los coeficientes de Christoffel, se tiene

$$\pi_n(z) = \frac{p_{n-1}(z)}{q_n(z)} = \sum_{i=1}^n \frac{\lambda_{n,i}}{z - x_{n,i}}.$$

Teorema de Markov

- Sea $\varphi(z) = z \sqrt{z^2 1}$ donde $\sqrt{z^2 1} > 1$ si z > 1.
- La función φ es analítica en $\overline{\mathbb{C}} \setminus [-1,1]$ y transforma el exterior de [-1,1] en el interior de \mathbb{T} .



Teorema de Markov

- Sea $\varphi(z) = z \sqrt{z^2 1}$ donde $\sqrt{z^2 1} > 1$ si z > 1.
- La función φ es analítica en $\overline{\mathbb{C}} \setminus [-1,1]$ y transforma el exterior de [-1,1] en el interior de \mathbb{T} .

Teorema de Markov

Supongamos que $\Sigma = [-1,1]$ y sea K un subconjunto compacto de $\overline{\mathbb{C}} \setminus [-1,1]$, entonces

$$\limsup_{n\to\infty}\|\widehat{\mu}-\pi_n\|_{K}^{1/2n}\leq \|\varphi\|_{K}.$$

• La sucesión $\{\pi_n\}$ es normal en $\overline{\mathbb{C}} \setminus [-1,1]$ ya que

$$|\pi_n(z)| \leq \sum_{i=1}^n \frac{\lambda_{n,i}}{|z - x_{n,i}|} \leq \frac{\|\mu\|}{d}, \quad z \in K,$$

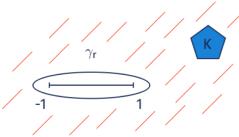
donde d=dist(K, [-1, 1]) > 0.

- La sucesión $\{\pi_n\}$ es normal en $\overline{\mathbb{C}} \setminus [-1,1]$.
- Se tiene $\lim_{n\to\infty}\pi_n(z)=\widehat{\mu}(z),\,z\not\in[-1,1],$ por la convergencia de la cuadratura gaussiana con $f_z(x)=1/(z-x)$, ya que

$$I[f_z] = \widehat{\mu}, \qquad I_n[f_z](z) = \sum_{i=1}^n \frac{\lambda_{n,i}}{z - x} = \pi_n(z).$$

- La sucesión $\{\pi_n\}$ es normal en $\overline{\mathbb{C}} \setminus [-1,1]$.
- Se tiene $\lim_{n\to\infty} \pi_n(z) = \widehat{\mu}(z), z \notin [-1,1].$
- Si $\gamma_r = \{z \in \mathbb{C} : |\varphi(z)| = r\}$ con r < 1, se tiene análogamente

$$\left|\frac{\widehat{\mu}(z) - \pi_n(z)}{[\varphi(z)]^{2n}}\right| \leq \frac{2\|\mu\|}{dr^{2n}} = \frac{M}{r^{2n}}, \quad z \in \gamma_r \implies z \in K.$$



Por el principio del máximo

I Escuela Orthonet

- La sucesión $\{\pi_n\}$ es normal en $\overline{\mathbb{C}} \setminus [-1,1]$.
- Se tiene $\lim_{n\to\infty} \pi_n(z) = \widehat{\mu}(z), z \notin [-1,1].$
- Si $\gamma_r = \{z \in \mathbb{C} : |\varphi(z)| = r\}$ con r < 1, se tiene análogamente

$$\left|\frac{\widehat{\mu}(z) - \pi_n(z)}{[\varphi(z)]^{2n}}\right| \leq \frac{2\|\mu\|}{dr^{2n}} = \frac{M}{r^{2n}}, \quad z \in \gamma_r \implies z \in K.$$

Por tanto

$$\|\widehat{\mu} - \pi_n\|_{\mathcal{K}} \leq M \frac{\|\varphi\|_{\mathcal{K}}^{2n}}{r^{2n}}.$$

• Y se concluye la demostración sacando la raíz 2n-ésima y tomando límites: cuando $n \to \infty$ y luego cuando $r \to 1$.

I Escuela Orthonet

Teorema de Stieltjes

ullet Si Σ no está acotado pero el problema de momentos está determinado para la medida μ los dos primeros pasos de la demostración anterior son válidos.

Teorema de Stieltjes

Sea $\it J$ el menor intervalo que contiene Σ y supongamos que el problema de momentos está determinado para la medida $\it \mu$. Entonces

$$\lim_{n\to\infty}\pi_n=\widehat{\mu},$$

uniformemente en subconjuntos compactos de $\overline{\mathbb{C}}\setminus J$.

Problema de momentos determinado

Importancia

- Se necesita la determinación del problema de momentos para probar entre otros los siguientes resultados:
 - La función de Christoffel recupera la medida.
 - Los puntos del soporte de la medida atraen ceros de los polinomios ortogonales.
 - Convergencia de la cuadratura gaussiana.
 - Teorema de Stieltjes.
 - · Unicidad del teorema de Favard.

Caracterización

Teorema

Sea $\Sigma = \mathbb{R}$ y $x_0 \in \mathbb{R}$ tal que $\mu(\{x_0\}) = 0$. Son equivalentes:

- $-\lambda(x_0)=0.$
- El problema de momentos para μ es determinado.

Medidas de Hermite y Laguerre

$$-d\mu(x) = \frac{e^{-x^2}dx}{\sqrt{\pi}} \implies \sum_{n=0}^{\infty} q_n^2(0) = \sum_{m=1}^{\infty} \frac{(2m-1)!!}{(2m)!!} = +\infty.$$

$$-d\mu(x) = \frac{e^{-x}x^{\alpha}dx}{\Gamma(\alpha+1)} \implies \sum_{n=0}^{\infty} q_n^2(0) = \sum_{n=1}^{\infty} \binom{n+\alpha}{n} = +\infty.$$

Condiciones de Carleman

• Los polinomios ortogonales $q_n = \gamma_n x^n + \cdots$ satisfacen la relación de recurrencia

$$xq_n(x) = a_{n+1}q_{n+1}(x) + b_nq_n(x) + a_nq_{n-1}(x),$$
 con $q_{-1} \equiv 0, q_0 \equiv 1.$

• El coeficiente a_n verifica

$$a_n = \langle xq_{n-1}(x), q_n(x) \rangle = \frac{\gamma_{n-1}}{\gamma_n} > 0.$$

Condiciones de Carleman

Teorema

Sean $\Sigma = \mathbb{R}$. Si

$$\sum_{n=1}^{\infty} \frac{1}{a_n} = +\infty,$$

entonces el problema de momentos para μ es determinado.

 Se deduce una condición suficiente sobre los momentos empleando la desigualdad de Carleman

$$\sum_{n=1}^{\infty}\frac{1}{\sqrt[2n]{c_{2n}}}\leq e\sum_{n=1}^{\infty}\frac{1}{a_n}.$$

Condiciones de Carleman

Teorema

Sean $\Sigma = \mathbb{R}$. Si

$$\sum_{n=1}^{\infty} \frac{1}{a_n} = +\infty,$$

entonces el problema de momentos para μ es determinado.

El problema de momentos es determinado si la medida no acumula mucho peso en infinito

Problemas de momentos

- El problema de momentos de Hamburger consiste en encontrar una medida soportada en \mathbb{R} con los momentos dados. (Es al que nos hemos referido siempre hasta ahora.)
- El problema de momentos de Stieltjes consiste en encontrar una medida soportada en $[0, +\infty)$ con los momentos dados.

(El reciproco no es cierto)

Medidas con los mismos momentos

• Si en la integral

$$\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

realizamos el cambio de variable $t = \log x - \frac{n+1}{2}$, se llega a

$$\int_0^{+\infty} x^n e^{-\log^2 x} \, dx = \sqrt{\pi} \, e^{(n+1)^2/4}$$

Medidas con los mismos momentos

• Realizando el mismo cambio de variable en

$$\int_{-\infty}^{+\infty} e^{-t^2} \sin(2\pi t) \, dt = 0$$

se llega a
$$\int_0^{+\infty} x^n e^{-\log^2 x} \sin(2\pi \log x) dx = 0$$

• Entonces las medidas absolutamente continuas en $[0, +\infty)$

$$d\mu_{\lambda}(x) = e^{-\log^2 x} \left[1 + \lambda \sin(2\pi \log x) \right] dx, \quad |\lambda| < 1,$$

tienen los mismos momentos y los mismos polinomios ortogonales, que reciben el nombre de de Stieltjes-Wigert.

Propiedades asintóticas

Clasificación

• Los polinomios ortogonales satisfacen relaciones asintóticas de muy diverso tipo que en una *primera* aproximación pueden clasificarse en:

 $\bullet \mbox{ Fuera del soporte de } \mu \left\{ \begin{array}{l} \mbox{D\'ebil o de la ra\'iz n-\'esima.} \\ \mbox{ Del cociente o de Nevai.} \\ \mbox{ Fuerte o de Szeg\~o.} \end{array} \right.$

• Sobre el soporte de μ Débil. Asociada a la clase de Nevai. Fuerte o de Szegő.

• Sea en todos los casos $\Sigma = [-1, 1]$ el soporte de la medida μ .

$$\psi(z) = 1/\varphi(z) = z + \sqrt{z^2 - 1}$$

ullet Se dice que μ es regular y se escribe $\mu \in \mathbf{Reg}$ si

$$\lim_{n\to\infty} \sqrt[n]{\gamma_n} = 2.$$
 (¿Por qué 2?)

• Si $\mu \in \mathbf{Reg}$ se cumple

$$\lim_{n\to\infty} \sqrt[n]{|q_n(z)|} = |\psi(z)|$$

uniformemente en subconjuntos compactos de $\mathbb{C} \setminus [-1, 1]$.

ullet Se dice que μ es regular y se escribe $\mu \in \mathbf{Reg}$ si

$$\lim_{n\to\infty}\sqrt[n]{\gamma_n}=2.$$

• Si $\mu \in \mathbf{Reg}$ se cumple

$$\lim_{n\to\infty}\sqrt[n]{|q_n(z)|}=|\psi(z)|$$

uniformemente en subconjuntos compactos de $\mathbb{C} \setminus [-1, 1]$.

ullet Si $\mu \in \mathbf{Reg}$ y K es compacto de $\overline{\mathbb{C}} \setminus [-1,1]$, se cumple

$$\limsup_{n\to\infty}\|\widehat{\mu}-\pi_n\|_K^{1/2n}=\|\varphi\|_K$$

ullet Se dice que μ es regular y se escribe $\mu \in \mathbf{Reg}$ si

$$\lim_{n\to\infty} \sqrt[n]{\gamma_n} = 2.$$

• Si $\mu \in \mathbf{Reg}$ se cumple

$$\lim_{n\to\infty}\sqrt[n]{|q_n(z)|}=|\psi(z)|$$

uniformemente en subconjuntos compactos de $\mathbb{C} \setminus [-1, 1]$.

- ullet Veremos que esta clase de medidas puede definirse también para el caso en que Σ sea un compacto de $\mathbb C$.
- Y que si $\mu \in \mathbf{Reg}$ la norma L^2 y la norma L^∞ son comparables.

• Se dice que μ pertenece a la clase de Nevai y se escribe $\mu \in \mathbf{N}$ si los coeficientes a_n y b_n de la relación de recurrencia verifican

$$\lim_{n\to\infty}a_n=\frac{1}{2},\qquad \lim_{n\to\infty}b_n=0.$$

• Si $\mu \in \mathbf{N}$ se cumple

$$\lim_{n\to\infty}\frac{q_{n+1}(z)}{q_n(z)}=\psi(z),$$

uniformemente en subconjuntos compactos de $\mathbb{C} \setminus [-1, 1]$.

• Si $\mu \in \mathbf{S}$ se cumple

$$\lim_{n\to\infty}\frac{q_n(z)}{[\psi(z)]^n}=\frac{1}{\sqrt{2\pi}}\frac{1}{H(\varphi(z))},$$

uniformemente en subconjuntos compactos de $\mathbb{C} \setminus [-1,1]$. La función H recibe el nombre de función de Szegő asociada a μ .

$$H(z) = \exp\left\{ rac{1}{4\pi} \int_0^{2\pi} rac{e^{i heta} + z}{e^{i heta} - z} \log \sigma'_{\mu}(heta) \, d heta
ight\}.$$

$$\boxed{\mu \in \mathbf{S} \implies \boxed{\mu' > 0 \; \text{ c.t.p.}} \implies \boxed{\mu \in \mathbf{N}} \implies \boxed{\mu \in \mathbf{Reg}}$$

(Teorema de Rakhmanov)

Principio general

- Se plantea un problema de aproximación racional de funciones analíticas.
- Los denominadores de los aproximantes satisfacen ciertas relaciones de ortogonalidad.
- Se aplican propiedades y comportamiento asintótico de polinomios ortogonales.
- Se prueba convergencia de los aproximantes racionales a la función.

I Escuela Orthonet

Convergencia débil de medidas

- Sean μ_n y μ medidas de Borel positivas soportadas en $\overline{\mathbb{C}}$.
- Las medidas de Borel positivas son los funcionales lineales positivos sobre $\mathcal{C}(\overline{\mathbb{C}})$. Por tanto, la convergencia natural es la débil estrella de los espacios duales.
- Se escribe $\mu_n \stackrel{*}{\longrightarrow} \mu$ si

$$\lim_{n\to\infty}\int f(z)\,d\mu_n(z)=\int f(z)\,d\mu(z)$$

para toda función f continua en $\overline{\mathbb{C}}$.

Convergencia débil de medidas

• Si $\mu_n=\frac{1}{n}\sum_{k=1}^n\delta_{k/n}$, entonces $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nf(k/n)=\int_0^1f(x)\,dx$ y por tanto

$$\mu_n \stackrel{*}{\longrightarrow} dx$$
 en [0,1].

• Dado un polinomio $p(x) = \prod_{k=1}^m (x-x_k)$, la medida contadora de ceros normalizada μ_p es la medida de probabilidad discreta

$$\mu_p = \frac{1}{n} \sum_{k=1}^n \delta_{X_k}.$$

• El comportamiento de o(n) puntos no altera el límite débil estrella de una medida contadora.

Convergencia débil de medidas

• Los ceros del polinomio de Chebyschev $T_n(x) = \cos n\theta$, $x = \cos \theta$, son los puntos $\cos \left(\frac{2k-1}{2n}\pi\right)$, k = 1, ..., n.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f \left[\cos \left(\frac{2k-1}{2n} \pi \right) \right] = \frac{1}{\pi} \int_{0}^{\pi} f(\cos \theta) \, d\theta$$
$$= \int_{-1}^{1} f(x) \, \frac{dx}{\pi \sqrt{1-x^{2}}}.$$

• Por tanto $\mu_{T_n} \xrightarrow{*} \frac{dx}{\pi \sqrt{1-x^2}}$

Teorema

Si $\mu \in \mathbf{Reg}$ entonces

$$\mu_{q_n} \stackrel{*}{\longrightarrow} \frac{dx}{\pi\sqrt{1-x^2}}.$$

Teorema

Si $\mu \in \mathbf{N}$ entonces

$$q_n^2(x)d\mu(x) \stackrel{*}{\longrightarrow} \frac{dx}{\pi\sqrt{1-x^2}}.$$

• Si $d\mu(x) = \frac{w(x)dx}{\pi\sqrt{1-x^2}}$, entonces se tienen las fórmulas

$$\sum_{i=1}^{n} \lambda_{n}(x_{n,i}) \delta_{x_{n,i}} \xrightarrow{*} \frac{w(x) dx}{\pi \sqrt{1 - x^{2}}}$$

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{n,i}} \xrightarrow{*} \frac{dx}{\pi \sqrt{1 - x^{2}}} \quad \text{si} \quad w > 0 \quad \text{c.t.p.}$$

$$\lim_{n\to\infty}n\lambda_n(x)=w(x)\quad \text{c.t.p. si}\quad \mu\in\mathbf{S}$$

• Es un problema abierto importante tratar de probar la última fórmula bajo la hipótesis w > 0 c.t.p.

Teorema

Si $\mu \in \mathbf{S}$, es absolutamente continua y μ' es continua y positiva verificando una condición de continuidad tipo Lipschitz, se tiene

$$\lim_{n\to\infty} \sqrt[4]{1-x^2} \sqrt{\mu'(x)} \, q_n(x) = \sqrt{\frac{2}{\pi}} \cos[n\theta + \gamma(\theta)], \quad x = \cos\theta,$$

uniformemente en [-1,1], donde $\gamma(\theta)$ es el argumento que toma en $\mathbb T$ la función de Szegő asociada a μ .

• Los polinomios ortogonales clásicos, que son solución de una ecuación diferencial, satisfacen relaciones asintóticas más detalladas.

I Escuela Orthonet

Teorema

Si $\mu \in \mathbf{S}$, es absolutamente continua y μ' es continua y positiva verificando una condición de continuidad tipo Lipschitz, se tiene

$$\lim_{n\to\infty} \sqrt[4]{1-x^2} \sqrt{\mu'(x)} \, q_n(x) = \sqrt{\frac{2}{\pi}} \cos[n\theta + \gamma(\theta)], \quad x = \cos\theta,$$

uniformemente en [-1,1], donde $\gamma(\theta)$ es el argumento que toma en $\mathbb T$ la función de Szegő asociada a μ .

Relaciones asintóticas de los polinomios ortogonales tienen límites universales (no dependen de la medida)

Conclusión

Algunas ideas importantes para recordar

- Extremalidad de los polinomios ortogonales y del núcleo reproductor.
- No hay una correspondencia biunívoca entre una medida y sus momentos.
- La función de Christoffel recupera la medida en el caso determinado y da información sobre el problema de momentos.
- Jerarquía y clases de las relaciones asintóticas de los polinomios ortogonales.

I Escuela Orthonet

Bibliografía

- Aptekarev, Buslaev, Martínez-Finkelshtein y Suetin, Padé approximants, continued fractions, and orthogonal polynomials, Russian Math. Surveys 66, (2011) 1049–1131.
- **Freud**, *Orthogonal Polynomials*, Akadémiai Kiadóo, Budapest 1971.
- **Stahl y Totik**, *General Orthogonal Polynomials*, Cambridge University Press, Cambridge 1992.
- Szegő, Orthogonal Polynomials, 4ª Ed., AMS Colloquium Publications XXIII, AMS, Providence, RI 1975.

I Escuela Orthonet