A Hankel matrix acting on conformally invariant spaces

Noel Merchán

Universidad de Málaga

EARCO 2015, Carmona, 21 a 23 de mayo de 2015

ABSTRACT: If μ is a finite positive Borel measure on [0, 1) and $n = 0, 1, 2, \ldots$, we let μ_n denote the moment of order n of μ , that is,

$$\mu_n = \int_{[0,1)} t^n \, d\mu(t),$$

and we let \mathcal{H}_{μ} to be the Hankel matrix $(\mu_{n,k})_{n,k\geq 0}$ with entries $\mu_{n,k} = \mu_{n+k}$. The matrix \mathcal{H}_{μ} can be viewed as an operator on spaces of analytic functions in the unit disc \mathbb{D} by its action on the Taylor coefficients:

$$a_n \mapsto \sum_{k=0}^{\infty} \mu_{n,k} a_k, \quad n = 0, 1, 2, \cdots.$$

To be precise, if $f(z) = \sum_{k=0}^{\infty} a_k z^k \in \mathcal{H}ol(\mathbb{D})$ we define

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} a_k \right) z^n,$$

whenever the right hand side makes sense and defines an analytic function in \mathbb{D} . If μ is the Lebesgue measure on [0, 1) the matrix \mathcal{H}_{μ} reduces to the Hilbert matrix $\mathcal{H} = ((n+k+1)^{-1})_{n,k\geq 0}$, which induces the classical Hilbert operator.

The action of \mathcal{H}_{μ} on Hardy spaces has been studied in [1] and [2]. In this work we shall study the action of \mathcal{H}_{μ} on conformally invariant spaces of analytic functions in the disc. Among other results we shall characterize the measures μ for which \mathcal{H}_{μ} is well defined and bounded on the Bloch space and on *BMOA*.

References

- Ch. Chatzifountas, D. Girela and J. A. Peláez A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl. 413, n. 1, (2014), 154–168.
- [2] P. Galanopoulos, J. A. Peláez Hankel matrices on Hardy and Bergman spaces, Studia Mathematica, 200, n. 3, (2010), 201–220.