MULTIPLIERS FOR SPACES OF UNCONDITIONAL SERIES IN THE HARDY SPACES $H^p(\mathbb{D})$

GUILLERMO P. CURBERA AND WERNER J. RICKER

Let $H^p(\mathbb{D})$, $1 \leq p \leq \infty$, denote the usual Hardy spaces of analytic functions in the open unit disc \mathbb{D} . Consider the spaces H_{uc}^p consisting of all functions $f_a(z) = \sum_{n=0}^{\infty} a_n z^n$ such that $f_a \in H^p(\mathbb{D})$ and the convergence of the Taylor series of f_a is unconditional in $H^p(\mathbb{D})$. Here 'a' denotes the sequence of coefficients of $\sum_{n=0}^{\infty} a_n z^n$. Due to the Bounded Multiplier Test we have:

$$H_{uc}^{p} := \left\{ f_{a}(z) = \sum_{n=0}^{\infty} a_{n} z^{n} : f_{b}(z) = \sum_{n=0}^{\infty} b_{n} z^{n} \in H^{p}(\mathbb{D}), \forall |b_{n}| \le |a_{n}| \right\}.$$

Some facts taken from [1], are as follows.

• The norm in H_{uc}^p is given by

$$||f_a||_{H^p_{uc}} := \sup_{|b_n| \le |a_n|} \left\| \sum_{n=0}^{\infty} b_n z^n \right\|_{H^p(\mathbb{D})}$$

- For 1 ≤ p ≤ 2, due to a theorem or Orlicz, we have H^p_{uc} = H²(D).
 H[∞]_{uc} = ℓ¹(D), where ℓ¹(D) := {f_a(z) = ∑[∞]_{n=0} a_nzⁿ, a = (a_n) ∈ ℓ¹}.
 For all even positive integers p = 2k with k ∈ N, due to the majorant property of Hardy and Littlewwod, we have the simpler description

$$H_{uc}^{2k} := \left\{ f_a(z) = \sum_{n=0}^{\infty} a_n z^n : f_{|a|}(z) = \sum_{n=0}^{\infty} |a_n| z^n \in H^{2k}(\mathbb{D}) \right\}$$

with the norm given by

$$||f_a||_{H^{2k}_{uc}} = ||f_{|a|}||_{H^{2k}(\mathbb{D})} = \left\|\sum_{n=0}^{\infty} |a_n| z^n\right\|_{H^{2k}(\mathbb{D})}$$

• For the particular case of H_{uc}^4 the previous description becomes

$$H_{uc}^{4} = \left\{ f_{a} : f_{|a|} \in H^{4}(\mathbb{D}) \right\} = \left\{ f_{a} : f_{|a|}^{2} \in H^{2}(\mathbb{D}) \right\}$$

with

(1)
$$||f_a||_{H^4_{uc}} = ||f^2_{|a|}||_{H^2(\mathbb{D})}^{1/2} = ||f_{|a|*|a|}||_{H^2(\mathbb{D})}^{1/2} = \left(\sum_{n=0}^{\infty} \left(\sum_{k=0}^n |a_k a_{n-k}|\right)^2\right)^{1/4}$$

Date: January 11, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 30H10, 42A45; Secondary 47B37.

Key words and phrases. multiplier, Hardy space, unconditional convergence, majorant property.

Here we use the convolution of sequences. Namely, for $a = (a_n)_{n=0}^{\infty}$ and $b = (b_n)_{n=0}^{\infty}$, recall that

$$a * b = \left((a * b)_n \right)_{n=0}^{\infty} = \left(\sum_{k=0}^n a_k b_{n-k} \right)_{n=0}^{\infty}.$$

With this background we can now formulate the open problem. It concerns the determination of the space of all *analytic multipliers* of the space H_{uc}^p , that is, to identify all functions $\varphi_b(z) = \sum_{n=0}^{\infty} b_n z^n$, analytic in \mathbb{D} , such that the multiplication operator

(2)
$$M_{\varphi_b} \colon f_a \in H^p_{uc} \longmapsto \varphi_b \cdot f_a \in H^p_{uc}, \quad \forall f_a \in H^p_{uc},$$

is continuous. Label the set of all such multipliers by $\mathcal{M}(H_{uc}^p)$. For 2 it is known that:

- $\ell^1(\mathbb{D}) \subset \mathcal{M}(H^p_{uc}) \subset H^\infty(\mathbb{D})$; see [1, Proposition 3.9].
- $A(\mathbb{D}) \not\subset \mathcal{M}(H^p_{uc})$, where $A(\mathbb{D})$ is the disc algebra; see [1, Proposition 3.10]. In particular, $\mathcal{M}(H^p_{uc}) \neq H^{\infty}(\mathbb{D})$, which contrasts to the known fact that $\mathcal{M}(H^p) = H^{\infty}(\mathbb{D})$ for $1 \leq p \leq \infty$.

In view of (1) and (2), the condition $\Phi(b) < \infty$, with

$$\Phi(b) := \sup_{a=(a_n)_{n=0}^{\infty} \neq 0} \frac{\sum_{k=0}^{\infty} \left(\sum_{k=0}^{n} \left| \sum_{j=0}^{k} a_j b_{k-j} \right| \left| \sum_{j=0}^{n-k} a_j b_{n-k-j} \right| \right)^2}{\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} |a_k a_{n-k}| \right)^2},$$

corresponds precisely to $\varphi_b \in \mathcal{M}(H^4_{uc})$.

Question: Is it the case that $\mathcal{M}(H^4_{uc}) = \ell^1(\mathbb{D})$?

If so, this means that $\Phi(b) < \infty$ should imply that $b \in \ell^1$. An answer would, of course, also throw some light on the more general problem of determining whether or not $\mathcal{M}(H^{2k}_{uc})$ is k-dependent (or $\mathcal{M}(H^p_{uc})$ is p-dependent).

References

 G.P. Curbera and W.J. Ricker, The Cesàro operator and unconditional Taylor series in Hardy spaces, Integral Equations and Operator Theory 83 (2015), 179-195.

FACULTAD DE MATEMÁTICAS & IMUS, UNIVERSIDAD DE SEVILLA, APTDO. 1160, SEVILLA 41080, SPAIN

E-mail address: curbera@us.es

Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany

E-mail address: werner.ricker@ku.de