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Abstract
We present a general procedure for finding recurrence relations of the
radial wavefunctions for Nth-dimensional isotropic harmonic oscillators and
hydrogenlike atoms.

PACS numbers: 03.65.Ge, 31.15.+q

1. Introduction

There are many applications in modern physics that require knowledge of the wavefunctions of
hydrogenlike atoms and isotropic harmonic oscillators,especially for finding the corresponding
matrix elements (see, e.g., [18, 23] and references therein). There are several methods for
generating such wavefunctions among which the so-called factorization method of Infeld and
Hull [12] is of particular significance (for more recent papers see, e.g., [3, 13, 17, 24]).
Moreover, the recurrence relations and the ladder-type operators for these wavefunctions
are useful for finding the transition probabilities and evaluation of certain integrals [18, 23].
Methods for obtaining such recurrence relations have attracted the interest of several authors
(see, e.g., [6, 21, 22]), and usually are based on the connection of such functions with
the classical Laguerre polynomials. For generating further ‘non-trivial’ relations a Laplace-
transform-based method has been developed recently [6, 25] but the calculation is cumbersome
and requires inversion formulae.

Our main aim in this paper is to present an alternative approach for generating recurrence
relations and ladder-type operators for the Nth-dimensional isotropic harmonic oscillators and
hydrogenlike atoms. The idea is to exploit the connection of the radial wavefunctions with
the classical Laguerre polynomials and use a general theorem for the hypergeometric-type
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functions [20] that will allow us to obtain several new relations for these polynomials and
therefore, for the wavefunctions. Its advantage, compared to the other approaches, is not only
that it can be easily extended to other exactly solvable models which involve hypergeometric
functions or polynomials (see, e.g., [5]), but also because it is a constructive method: one
chooses the values of the parameters and one gets the corresponding coefficients. The same
method has been recently used [7, 9, 10, 27, 28] to derive new recurrence relations for the
hypergeometric polynomials and functions, i.e. the solutions of the second-order differential
equation σ(x)y ′′ + τ (x)y ′ + λy = 0, being σ and τ polynomials of degree, at most, 2 and 1,
respectively. We will only show here how this method works in some representative examples
and refer to [7] for a more detailed list.

The structure of the paper is as follows: In section 2 the needed results and notation from
the special function theory are introduced. In section 3 the isotropic oscillator is introduced and
several recurrence and ladder-type relations are obtained. Similar results for the hydrogenlike
atoms are presented in section 4. Finally, relevant references are quoted.

2. Preliminaries

In this paper we will deal with the hypergeometric functions yν , which are the solution of the
hypergeometric-type differential equation

σ(z)y ′′(z) + τ (z)y ′(z) + λy(z) = 0 (2.1)

where σ and τ are polynomials with deg σ � 2, deg τ � 1 and λ is a constant. The solutions
of this equation are usually called functions of hypergeometric type and are denoted by yν(z)

where ν is such that λ = −ντ ′ − ν(ν − 1)σ ′′/2. The functions yν have the form [20]

y(z) = yν(z) = Cν

ρ(z)

∫
C

σ ν(s)ρ(s)

(s − z)ν+1
ds (2.2)

where ρ is a solution of the Pearson equation (σρ)′ = τρ, σ and τ do not depend on ν,C is a
contour in the complex plane such that its end points s1 and s2 satisfy the condition

σν+1(s)ρ(s)

(s − z)ν+2

∣∣∣∣∣
s2

s1

= 0 (2.3)

and Cν is a normalizing factor.
For the hypergeometric functions yν the following theorem holds [20, page 18]:

Theorem 2.1. Let y(ki)
νi

(z), i = 1, 2, 3, be any three derivatives of order ki of the functions of
hypergeometric type, νi − νj being an integer and such that

σν0+1(s)ρ(s)

(s − z)µ0
sm

∣∣∣∣∣
s2

s1

= 0 m = 0, 1, 2, . . .

where ν0 denotes the index νi with minimal real part and µ0 that with maximal real part.
Then, there exist three non-vanishing polynomials Bi(z), i = 1, 2, 3, such that

3∑
i=1

Bi(z)y
(ki)
νi

(z) = 0. (2.4)

A special case of these functions is the polynomials of hypergeometric type, i.e. the
polynomial solutions of equation (2.1). They are defined by [20]

pn(z) = Cn

ρ(z)

∮
σn(s)ρ(s)

(s − z)n+1
ds n = 0, 1, 2, . . .
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i.e., the same function yν of the expression (2.2) but the contour C is closed and ν is a
non-negative integer. Note that, in this case, the condition (2.3) is automatically fulfilled, so
the theorem 2.1 holds for any family of polynomials of hypergeometric type. Note also that
theorem 2.1 assures the existence of the non-vanishing polynomials in (2.4) but does not give
any method for finding them. In general, it is not easy to find explicit expressions for these
polynomials Bi but, in some cases [7, 9–11, 27, 28], these coefficients are obtained explicitly
in terms of the coefficients of the polynomials σ and τ in (2.1).

An example of such polynomials is the Laguerre polynomials Lα
n defined by the

hypergeometric series

Lα
n(x) = (α + 1)n

n!
1F1

( −n
x

α + 1

)
= (α + 1)n

n!

n∑
k=0

(−n)k

(α + 1)k

xk

k!
(2.5)

(a)0 := 1 (a)k := a(a + 1)(a + 2) · · · (a + k − 1) k = 1, 2, 3, . . . .

These polynomials satisfy the following recurrence and differential–recurrence relations useful
in the following sections (see, e.g., [1, 20, 26])

d

dx
Lα

n(x) = −Lα+1
n−1(x) (2.6)

x
d

dx
Lα

n(x) = nLα
n(x) − (n + α)Lα

n−1(x) = (n + 1)Lα
n+1(x) − (n + α + 1 − x)Lα

n(x) (2.7)

xLα+1
n (x) = (n + α + 1)Lα

n(x) − (n + 1)Lα
n+1(x) (2.8)

xLα+1
n (x) = (n + α)Lα

n−1(x) − (n − x)Lα
n(x) (2.9)

Lα−1
n (x) = Lα

n(x) − Lα
n−1(x) (2.10)

(n + 1)Lα
n+1(x) − (2n + α + 1 − x)Lα

n(x) + (n + α)Lα
n−1(x) = 0. (2.11)

Other instances of hypergeometric polynomials are the Jacobi, Bessel and Hermite
polynomials [8, 20, 26].

3. The isotropic harmonic oscillator

The N-dimensional isotropic harmonic oscillator (IHO) is described by the Schrödinger
equation

(
−� +

1

2
λ2r2

)
� = E� � =

n∑
k=1

∂

∂xk

r =
√√√√ n∑

k=1

x2
k .

For solving it one uses the method of separation of variables that leads to a solution of
the form � = R

(N)
nl (r)Ylm(
N), where R

(N)
nl (r) is the radial part, usually called the radial

wavefunctions, defined by (see, e.g., [4, 6])

R
(N)

nl (r) = N (N)

nl r l e− 1
2 λr2

L
l+ N

2 −1
n (λr2) N (N)

nl =
√√√√ 2n!λl+ N

2

�
(
n + l + N

2

) (3.1)

n = 0, 1, 2, . . . and l = 0, 1, 2, . . . being the quantum numbers, and N � 3 the dimension of
the space. The angular part Ylm(
N) is the so-called Nth-spherical or hyperspherical harmonics
[4, 19]. In the following, we will assume that the parameters n, l,N are non-negative integers.
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3.1. Recurrence relations connecting three different radial functions

We will look, now, for recurrence relations connecting three different radial functions.

Theorem 3.1. Let R
(N)

nl (r), R
(N)

n+n1,l+l1
(r) and R

(N)

n+n2,l+l2
(r) be three different radial functions of

the Nth-dimensional isotropic harmonic oscillator, where n1, n2 and l1, l2 are integers such
that min (n + n1, n + n2, l + l1, l + l2) � 0. Then, there exist non-vanishing polynomials in
r,A0, A1, and A2, such that

A0R
(N)
n,l (r) + A1R

(N)
n+n1,l+l1

(r) + A2R
(N)
n+n2,l+l2

(r) = 0. (3.2)

Proof. For the sake of simplicity we will prove the theorem for the case when l1, l2 are
nonnegative integers. The case when l1, l2 are integers can be derived in the same way since
the ‘cases’ R

(N)
nl , R

(N)
n+n1,l±l1

, R
(N)
n+n2,l±l2

can be reduced to R
(N)
nl , R

(N)
n+n1,l+l1

, R
(N)
n+n2,l+l2

by choosing
l = min(l, l ± l1, l ± l2).

From (3.1) we have

L
l+ N

2 −1
n (λr2) =

(
N (N)

n,l

)−1
r−l e

1
2 λr2

R
(N)

nl (r). (3.3)

Thus,

L
(l+l1)+

N
2 −1

n+n1 (λr2) =
(
N (N)

n+n1,l+l1

)−1
r−(l+l1) e

1
2 λr2

R
(N)
n+n1,l+l1

(r) (3.4)

L
(l+l2)+ N

2 −1
n+n2

(λr2) =
(
N (N)

n+n2,l+l2

)−1
r−(l+l2) e

1
2 λr2

R
(N)
n+n2,l+l2

(r). (3.5)

Putting s = λr2, it is possible to rewrite the left-hand side of (3.4) and (3.5) in the form

L
(l+l1)+

N
2 −1

n+n1 (s) = (−1)l1
dl1

dsl1
L

l+ N
2 −1

n+n1+l1
(s) L

(l+l2)+
N
2 −1

n+n2 (s) = (−1)l2
dl2

dsl2
L

l+ N
2 −1

n+n2+l2
(s) (3.6)

respectively. On the other hand, by the generalized three-term recurrence relation (2.4), there
exist non-vanishing polynomials Bi(s), i = 0, 1, 2, such that

B0L
l+ N

2 −1
n (s) + B1

dl2

dsl2
L

l+ N
2 −1

n+n1+l1
(s) + B2

dl1

dsl1
L

l+ N
2 −1

n+n2+l2
(s) = 0.

Thus, since (3.6),

C0L
l+ N

2 −1
n (s) + C1L

(l+l1)+ N
2 −1

n+n1
(s) + C2L

(l+l2)+ N
2 −1

n+n2
(s) = 0 (3.7)

where C0 = B0, C1 = (−1)l1B1 and C2 = (−1)l2B2. If we substitute (3.3)–(3.5) in (3.7), we
have(
N (N)

n,l

)−1
C0R

(N)
nl (r) +

(
N (N)

n+n1,l+l1

)−1
C1r

−l1R
(N)
n+n1,l+l1

(r)

+
(
N (N)

n+n2,l+l2

)−1
C2r

−l2R
(N)
n+n2,l+l2

(r) = 0 (3.8)

which transforms into (3.2) where A0 = (N (N)
n,l

)−1
C0r

l1+l2 , A1 = (N (N)
n+n1,l+l1

)−1
C1r

l2 and

A2 = (N (N)
n+n2,l+l2

)−1
C2r

l1 . Obviously these functions Ai, i = 0, 1, 2, are polynomials in r. �

Using this technique, it is very simple to obtain concrete relations between three different
radial functions of the IHO. Here we will present five of them. As we already pointed out, it
is not easy to obtain the coefficients Ci in (3.7), nevertheless, combining in a certain way the
properties (2.6)–(2.11) they can be easily identified. In the following examples we can show
how the coefficients Ci can be ‘guessed’. The idea is as follows: one should first decide the
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relation to be obtained by defining the values n1, n2, l1 and l2 in (3.7), and then, combining in
a certain way equations (2.6)–(2.11), transform (3.7) into one of the formulae (2.6)–(2.11) or
in a sum of linearly independent Laguerre polynomials from where the unknown coefficients
easily follow. Let us show how this works.

• Substituting n1 = −1, n2 = 1, l1 = l2 = 0 and α = l + N
2 − 1 in (3.7) it becomes

C0L
α
n(s) + C1L

α
n−1(s) + C2L

α
n+1(s) = 0.

Comparing the above expression with the relation (2.11) we see that the coefficients
Ci, i = 1, 2, 3 are given by C0 = s − (2n + α + 1), C1 = n + α and C2 = n + 1.
Substituting these values in (3.8) we find the following recurrence relation√

n

(
n + l +

N

2
− 1

)
R

(N)

n−1,l(r) +

[
λr2 −

(
2n + l +

N

2

)]
R

(N)
n,l (r)

+

√
(n + 1)

(
n + l +

N

2

)
R

(N)

n+1,l (r) = 0.

This relation generalizes the recurrence relation obtained in [13] for the Laguerre
functions.

The next four formulae can be obtained in an analogous way. We will only indicate
here the values of the integers n1, n2, l1 and l2, respectively.

• n1 = n2 = 0, l1 = −1, l2 = 1:

r

√
λ

(
n + l +

N

2
− 1

)
R

(N)
n,l−1(r) −

(
l +

N

2
− 1 + λr2

)
R

(N)
n,l (r)

+ r

√
λ

(
n + l +

N

2

)
R

(N)
n,l+1(r) = 0.

• n1 = 0, n2 = 1, l1 = −1, l2 = 0:√
λ

(
n + l +

N

2
− 1

)
R

(N)

n,l−1(r) + (n + 1 − λr2)R
(N)

n,l (r)

−
√

(n + 1)

(
n + l +

N

2

)
R

(N)

n+1,l (r) = 0.

• n1 = −1, n2 = 0, l1 = 0, l2 = 1:

−
√

n

(
n + l +

N

2
− 1

)
R

(N)

n−1,l (r) + (n − λr2)R
(N)

n,l (r) + r

√
λ

(
n + l +

N

2

)
R

(N)

n,l+1(r) = 0.

• n1 = 0, n2 = 1, l1 = −1, l2 = 0:

r

√
λ

(
n + l +

N

2
− 1

)
R

(N)

n,l−1(r) + (n + 1 − λr2)R
(N)

n,l (r)

−
√

(n + 1)

(
n + l +

N

2

)
R

(N)

n+1,l (r) = 0.

Obviously, similar recurrence relations for the radial functions R
(N)
n,l (r) can be found using

the same procedure, i.e. choosing different values for the parameters n1, n2, l1 and l2.
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3.2. Ladder-type relations for the IHO radial functions

Next we will establish a linear relation involving two radial functions of the IHO and the
derivative of one of them. Some of these relations will define the so-called ladder operators
for the radial wavefunctions and have important applications in the so-called factorization
method (see, e.g., [3, 12, 13, 18, 24]).

Theorem 3.2. Let R
(N)
n,l (r) and R

(N)
n+n1,l+l1

(r) be two radial functions of the Nth-dimensional
isotropic harmonic oscillator and let min (n + n1, l + l1) � 0 and (n1)

2 + (l1)
2 �= 0, where n1

and l1 are integers. Then, there exist non-vanishing polynomials in r,A0, A1, and A2, such
that

A0R
(N)
n,l (r) + A1

d

dr
R

(N)
n,l (r) + A2R

(N)
n+n1,l+l1

(r) = 0. (3.9)

Proof. Again we will give the proof for the case when l1 is a non-negative integer. The case
when l1 is an integer can be derived in the same way by choosing l = min (l, l ± l1). We start
by taking the derivative of (3.3)

(
N (N)

n,l

)−1


d

(
r−l e

1
2 λr2

)
dr

R
(N)

nl (r) + r−l e
1
2 λr2 d

dr
R

(N)

nl (r)


 = d

dr
L

l+ N
2 −1

n (λr2)

= 2λr
d

ds
L

l+ N
2 −1

n (s) (3.10)

where s = λr2. Using the last expression and the identities

L
l+ N

2
n−1(s) = −

(
L

l+ N
2 −1

n (s)
)′

and L
(l+l1)+ N

2 −1
n+n1

(s) = (−1)l1
dl1

dsl1
L

l+ N
2 −1

n+n1+l1
(s)

as well as theorem 2.1 we can guarantee that there exists a recurrence relation with non-
vanishing polynomial coefficients B0, B1 and B2

B0L
l+ N

2 −1
n (s) + B1L

l+ N
2

n−1(s) + B2L
(l+l1)+

N
2 −1

n+n1 (s) = 0. (3.11)

Hence, from (3.10), (3.11) and (3.3)[
B1

d

dr
+ λr(B1 − 2B0) − B1

l

r

]
R

(N)
nl (r) = 2λB2

N (N)
n,l

N (N)
n+n1,l+l1

r1−l1R
(N)
n+n1,l+l1

(r) (3.12)

which completes the proof. �

Let us now show how one can obtain ladder-type relations for the radial wavefunction
R

(N)

n,l (r) of the IHO. Again the theorem does not give any method for getting ladder-type
operators but we can proceed as follows: first, to decide the relation that one wants to obtain
by defining the values n1 and l1 and substitute them in (3.11). Then, combining in a certain
way equations (2.6)–(2.11) transform (3.11) into one of the formulae (2.6)–(2.11) or in a
sum of linearly independent Laguerre polynomials and solve the resulting equations for the
unknown coefficients. Let us consider some examples.

• Choosing n1 = −1 and l1 = 1, (3.11) becomes

B0L
α
n(s) + B1L

α+1
n−1(s) + B2L

(α+1)
n−1 (s) = 0.

So, using the expression (2.6)

B0L
α
n(s) − (B1 + B2)(L

α
n)

′(s) = 0.



Recurrence relations for radial wavefunctions 2061

Since Lα
n(s) and (Lα

n)
′(s) are linearly independent, B0 = 0 and B1 = −B2. Then

equation (3.12), with the choice B2 = 1, gives[
d

dr
+ λr − l

r

]
R

(N)

n,l (r) = −2
N (N)

n,l

N (N)
n−1,l+1

R
(N)

n−1,l+1(r)

from where we find[
d

dr
+ λr − l

r

]
R

(N)

n,l (r) = −2
√

λnR
(N)

n−1,l+1(r). (3.13)

In the same way we have the following results:
• n1 = 1, l1 = −1:[

d

dr
− λr +

l + N − 2

r

]
R

(N)

n,l (r) = 2
√

λ(n + 1)R
(N)

n+1,l−1(r). (3.14)

• n1 = 1, l1 = 1:[
(λr2 − (n + 1))

(
d

dr
− l

r
− λr

)
+ 2λ

(
n + l +

N

2

)
r

]
R

(N)

n,l (r)

= 2

√
λ(n + 1)

(
n + l +

N

2

)(
n + l +

N

2
+ 1

)
R

(N)

n+1,l+1(r). (3.15)

• n1 = −1, l1 = −1:[
(λr2 − n)

(
d

dr
− l

r
+ λr

)
− 2n

(
λr +

l + N
2 − 1

r

)]
R

(N)

n,l (r)

= −2

√
λn

(
n + l +

N

2
− 1

)(
n + l +

N

2
− 2

)
R

(N)

n−1,l−1(r). (3.16)

• n1 = 0, l1 = −1:[
d

dr
+ λr +

l + N − 2

r

]
R

(N)

n,l (r) = 2

√
λ

(
n + l +

N

2
− 1

)
R

(N)

n,l−1(r). (3.17)

• n1 = 0, l1 = 1:[
d

dr
− λr − l

r

]
R

(N)
n,l (r) = −2

√
λ

(
n + l +

N

2

)
R

(N)
n,l+1(r). (3.18)

• n1 = 1, l1 = 0:[
r

(
d

dr
− λr

)
+ (2n + l + N)

]
R

(N)
n,l (r) = 2

√
(n + 1)

(
n + l +

N

2

)
R

(N)
n+1,l(r). (3.19)

• n1 = −1, l1 = 0:[
r

(
d

dr
+ λr

)
− (2n + l)

]
R

(N)
n,l (r) = −2

√
n

(
n + l +

N

2
− 1

)
R

(N)
n−1,l (r). (3.20)

The formulae (3.13), (3.14), (3.17) and (3.15) correspond (up to minor misprints) to the
formulae (16c), (16a), (16b) and (16d) of [6, p 4765], respectively, and generalize the ones
obtained in [13].
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4. Radial functions for the hydrogen atom

In this section we will provide a similar study for the N-dimensional hydrogen atom described
by the Schrödinger equation(

−� − 1

r

)
� = E� � =

n∑
k=1

∂

∂xk

r =
√√√√ n∑

k=1

x2
k .

The solution is given by � = R
(N)
nl (r)Ylm(
N), where the radial part R

(N)
nl (r) is defined by

[2, 14]

R
(N)

nl (r) = N (N)

n,l

(
r

n + N
2 − 3

2

)l

exp

(
− r

2
(
n + N

2 − 3
2

)
)

L2l+N−2
n−l−1

(
r

n + N
2 − 3

2

)
. (4.1)

Here n = l + 1, l + 2, . . . and l = 0, 1, 2, . . . are the quantum numbers, N � 3 is the dimension
of the space, and the normalizing constant N (N)

n,l is

N (N)
n,l =

√
(n − l − 1)!

(n + l + N − 3)!

2(
n + N−3

2

)2 . (4.2)

As before, Ylm(
N) denotes the hyperspherical harmonics.
Here it is important to note that the Laguerre polynomials that appear in the expression

of the radial functions are not the classical ones Lα
n(x) in the sense that the parameter α as

well as the variable x depend on the degree of the polynomials, n. Nevertheless, the algebraic
properties of the classical Laguerre polynomials (2.6)–(2.11) can be used for deriving the
algebraic relations of the radial wavefunctions as we will show in this section. When the
parameters of the classical polynomials depend on n, the polynomials are orthogonal with
respect to a variant weights [15, 16, 29]. Using the theory of these variant classical polynomials
the same recurrence relations can be derived as is shown in [29]. For more details on these
varying classical polynomials we refer the reader to the aforementioned works [15, 16, 29].

4.1. Recurrence relations and ladder-type operators for the radial functions

We start by proving the following general theorem:

Theorem 4.1. Let the functions R
(N)
nl

[(
n + N−3

2

)
r
]
, R

(N)
n+n1,l+l1

[(
n + n1 + N−3

2

)
r
]

and

R
(N)

n+n2,l+l2

[(
n + n2 + N−3

2

)
r
]

be three different radial functions of the Nth hydrogen atom and
n1, n2 and l1, l2 integers such that min (n + n1, n + n2, l + l1, l + l2) � 0. Then, there exist
non-vanishing polynomials in r,A0, A1, and A2, such that

A0R
(N)

nl

[(
n +

N − 3

2

)
r

]
+ A1R

(N)

n+n1,l+l1

[(
n + n1 +

N − 3

2

)
r

]

+ A2R
(N)
n+n2,l+l2

[(
n + n2 +

N − 3

2

)
r

]
= 0.

Proof. As in theorem 2.1 we will prove only the case when l1, l2 are non-negative integers
since the R

(N)

nl , R
(N)

n+n1,l±l1
, R

(N)

n+n2,l±l2
can be reduced to R

(N)

nl , R
(N)

n+n1,l+l1
, R

(N)

n+n2,l+l2
by choosing

l = min (l, l ± l1, l ± l2) .

We start from equation (4.1)

L2l+N−2
n−l−1

(
x

n + N−3
2

)
=
(
N (N)

n,l

)−1
(

x

n + N−3
2

)−l

exp

(
x

2
(
n + N−3

2

)
)

R
(N)

nl (x)
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or equivalently, taking x
/(

n + N−3
2

) = r, α = 2l + N − 2, and m = n − l − 1

Lα
m(r) =

(
N (N)

n,l

)−1
r−l er/2R

(N)
nl

[(
n +

N − 3

2

)
r

]
. (4.3)

In a similar way

L
α+2l1
m+n1−l1

(r) =
(
N (N)

n+n1,l+l1

)−1
r−(l+l1) er/2R

(N)
n+n1,l+l1

[(
n + n1 +

N − 3

2

)
r

]
(4.4)

L
α+2l2
m+n2−l2

(r) =
(
N (N)

n+n2,l+l2

)−1
r−(l+l2) er/2R

(N)

n+n2,l+l2

[(
n + n2 +

N − 3

2

)
r

]
. (4.5)

On the other hand

L
α+2l1
m+n1−l1

(r) = d2l1

dr2l1
Lα

m+n1+l1
(r) and L

α+2l2
m+n2−l2

(r) = d2l2

dr2l2
Lα

m+n2+l2
(r).

Now, using theorem 2.1 we can assure that there exist non-vanishing polynomials in r,A∗
0, A

∗
1,

and A∗
2, such that

A∗
0L

α
m(r) + A∗

1
d2l1

dr2l1
Lα

m+n1+l1
(r) + A∗

2
d2l2

dr2l2
Lα

m+n2+l2
(r) = 0

that is,

A∗
0L

α
m(r) + A∗

1L
α+2l1
m+n1−l1

(r) + A∗
2L

α+2l2
m+n2−l2

(r) = 0. (4.6)

Replacing the expressions Lα
m(r), L

α+2l1
m+n1−l1

(r) and L
α+2l2
m+n2−l2

(r) by the right-hand sides of
(4.3)–(4.5), respectively, in (4.6), we have

A∗
0

(
N (N)

n,l

)−1
R

(N)
nl

[(
n +

N − 3

2

)
r

]

+ A∗
1

(
N (N)

n+n1,l+l1

)−1
r−l1R

(N)
n+n1,l+l1

[(
n + n1 +

N − 3

2

)
r

]

+ A∗
2

(
N (N)

n+n2,l+l2

)−1
r−l2R

(N)
n+n2,l+l2

[(
n + n2 +

N − 3

2

)
r

]
= 0 (4.7)

that proves the theorem with

A0 = A∗
0

(
N (N)

n,l

)−1
rl1+l2 A1 = A∗

1

(
N (N)

n+n1,l+l1

)−1
rl2 A2 = A∗

2

(
N (N)

n+n2,l+l2

)−1
rl1 .

�

Just as in the IHO case from a long list of interesting cases, we will list some examples of
application of the last theorem.

• Putting n1 = 1, n2 = −1, l1 = l2 = 0 in (4.6), identifying the corresponding coefficients
using the relation (2.11) of the Laguerre polynomials, and then using the relation (4.1)
we find the expression

A0R
(N)
n−1,l

[(
n +

N

2
− 5

2

)
r

]
+ A1R

(N)
n,l

[(
n +

N − 3

2

)
r

]

+ A2R
(N)

n+1,l

[(
n +

N

2
− 1

2

)
r

]
= 0

(4.8)

A0 =
√

(n − l − 1)(n + l + N − 3)

(
n + (N − 5)/2

n + (N − 3)/2

)2

A1 = −(2n + N − 3 − r)

A2 =
√

(n − l)(n + l + N − 2)

(
n + (N − 1)/2

n + (N − 3)/2

)2

.
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• For n1 = n2 = 0 and l1 = −1, l2 = 1 we have

A0R
(N)
n,l−1(r) + A1R

(N)
n,l (r) + A2R

(N)
n,l+1(r) = 0

A0 = (2l + N − 1)
√

(n − l)(n + l + N − 3)r
(4.9)

A2 = (2l + N − 3)
√

(n − l − 1)(n + l + N − 2)r

A1 = (2l + N − 2)

[
(2n + N − 3)r − (2l + N − 3)(2l + N − 1)

(
n +

N − 3

2

)]
.

• n1 = 0, n2 = 1, l1 = −1 and l2 = 0. In this case we obtain

A0R
(N)
n,l−1

[(
n +

N − 3

2

)
r

]
+ A1R

(N)
n,l

[(
n +

N − 3

2

)
r

]

+ A2R
(N)

n+1,l

[(
n +

N

2
− 1

2

)
r

]
= 0

(4.10)
A0 = r

√
n + l + N − 3 A1 = √

n − l[(2l + N − 3) + r]

A2 = −(2l + N − 3)
√

n + l + N − 2

(
n + (N − 1)/2

n + (N − 3)/2

)2

.

Other cases can be obtained in the same way.
Now we will state for the Nth hydrogen atom the so-called ladder-type operators.

Theorem 4.2. Let R
(N)
nl

[(
n + N−3

2

)
r
]

and R
(N)
n+n1,l+l1

[(
n + n1 + N−3

2

)
r
]

be two different radial

functions of the Nth hydrogen atom and d
dr

R
(N)
nl

[(
n + N−3

2

)
r
]

the first derivative with respect
to r, where n1 and l1 are integers such that min (n + n1, l + l1) � 0, (n1)

2 + (l1)
2 �= 0. Then,

there exist non-vanishing polynomials in r,A0, A1 and A2, such that

A0R
(N)
nl

[(
n +

N − 3

2

)
r

]
+ A1

d

dr
R

(N)
nl

[(
n +

N − 3

2

)
r

]

+ A2R
(N)
n+n1,l+l1

[(
n + n1 +

N − 3

2

)
r

]
= 0. (4.11)

Proof. The proof is similar to that of theorem 3.2 so we will present here only a sketch of it.
In fact, using (4.1), we have

Lα
m(z) = (N (N)

n,l )−1z−l e
z
2 R

(N)
nl

[(
n +

N − 3

2

)
z

]

where z = r

n + N−3
2

α = 2l + N − 2 m = n − l − 1.

Taking the derivative of the above formula with respect to z, using the identity (2.6) for the
Laguerre polynomials and the theorem 2.1 we can guarantee the existence of non-vanishing
polynomials B0, B1, and B2 such that

B0L
α
m(z) + B1L

α+1
m−1(z) + B2L

α+2l1
m+n1−l1

(z) = 0. (4.12)

Now, using relation (4.1), we obtain

rl1

(
B1

d

dr
− B1

l

r
+

1

2
B1 − B0

)
R

(N)
nl

[(
n +

N − 3

2

)
r

]

= B2
N (N)

n,l

N (N)
n+n1,l+l1

R
(N)
nl

[(
n + n1 +

N − 3

2

)
r

]
(4.13)

from where the results immediately follow. �
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Again, from the above theorem it is easy to obtain several relations for the radial
wavefunctions of the Nth hydrogen atom and, in particular, the ladder operators in n and
l, respectively.

• n1 = 0, l1 = 1: we start by substituting n1 = 0 and l1 = 1 in (4.12)

B0L
α
m(z) + B1L

α+1
m−1(z) + B2L

α+2
m−1(z) = 0 where m = n − l − 1, α = 2l + N − 2.

Next, we use (2.8) and (2.6), respectively, to ‘eliminate’ Lα
m(z) and Lα+2

m−1(z). This yields,

B0L
α+1
m (z) + (B1 − B0)L

α+1
m−1(z) − B2

d

dz
Lα+1

m (z) = 0.

Then, comparing the resulting equation with expression (2.7), we find B0 = m,B2 = r,

B1 − B0 = −(m + α + 1), i.e. B0 = n − l − 1, B1 = −(2l + N − 1), and B2 = r , then
(4.13), after the change

(
n + N−3

2

)
r → r , leads to the following ladder-type relation[(

l +
N − 1

2

)(
d

dr
− l

r

)
+

1

2

]
R

(N)
nl (r) = −1

2

√
1 −

(
l + (N − 1)/2

n + (N − 3)/2

)2

R
(N)
n,l+1(r).

(4.14)

• n1 = 0, l1 = −1: substituting these values in (4.12) we obtain

B0L
α
m(z) + B1L

α+1
m−1(z) + B2L

α−2
m+1(z) = 0 where m = n − l − 1, α = 2l + N − 2.

Next, we use (2.8) and (2.10) twice, which leads to

B2L
α
m+1(z) +

(
B0 − B1

m

z
− 2B2

)
Lα

m(z) −
(

B1
m + α

z
+ B2

)
Lα

m−1(z) = 0.

Comparing this expression with (2.11) we find B2 = m+ 1, B0 −B1m/z−2B2 = −2m−
α − 1 + z and B1(m + α)/z + B2 = m + α, i.e. B0 = [(m + α)z −α(α − 1)]/(m + α), B1 =
(α − 1)z/(m + α). Substituting the functions B0, B1, and B2 in (4.13) we finally obtain[(

l +
N

2
− 3

2

)(
d

dr
+

l + N − 2

r

)
− 1

2

]
R

(N)
nl (r)

= 1

2

√
1 −

(
l + (N − 3)/2

n + (N − 3)/2

)2

R
(N)
n,l−1(r). (4.15)

In the same way we find
• n1 = −1, l1 = −1:[

(2l + N − 3 + r)

(
d

dr
+

1

2

)
+

(2l + N − 3)(l + N − 2)

r
− (n − 1)

]

× R
(N)

nl

[(
n +

N − 3

2

)
r

]
=
√

(n + l + N − 3)(n + l + N − 4)

×
(

n + (N − 5)/2

n + (N − 3)/2

)2

R
(N)
n−1,l−1

[(
n +

N − 5

2

)
r

]
. (4.16)

• n1 = 1, l1 = 1:[
(2l + N − 1 + r)

(
d

dr
− l

r
− 1

2

)
+ (n + l + N − 2)

]
R

(N)

nl

[(
n +

N − 3

2

)
r

]

= −
√

(n + l + N − 1)(n + l + N − 2)

(
n + (N − 1)/2

n + (N − 3)/2

)2

× R
(N)
n+1,l+1

[(
n +

N − 1

2

)
r

]
. (4.17)
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• n1 = −1, l1 = 1:[
(r − (2l + N − 1))

(
d

dr
− l

r
+

1

2

)
− (n − l − 1)

]
R

(N)
nl

[(
n +

N − 3

2

)
r

]

=
√

(n − l − 1)(n − l − 2)

(
n + (N − 5)/2

n + (N − 3)/2

)2

R
(N)
n−1,l+1

[(
n +

N − 5

2

)
r

]
.

(4.18)

• n1 = 1, l1 = −1:[
(2l + N − 3 − r)

(
d

dr
+

l + N − 2

r
− 1

2

)
− (n − l)

]
R

(N)
nl

[(
n +

N − 3

2

)
r

]

=
√

(n − l)(n − l − 1)

(
n + (N − 1)/2

n + (N − 3)/2

)2

R
(N)

n+1,l−1

[(
n +

N − 1

2

)
r

]
.

(4.19)

• n1 = −1, l1 = 0:[
r

(
d

dr
+

1

2
(
n + N−3

2

)
)

− (n − 1)

]
R

(N)

nl (r)

= −
√

(n − l − 1)(n + l + N − 3)

(
n + (N − 5)/2

n + (N − 3)/2

)2

× R
(N)
n−1,l

[(
n + (N − 5)/2

n + (N − 3)/2

)
r

]
. (4.20)

• n1 = 1, l1 = 0:[
r

(
d

dr
− 1

2 (n + (N − 3)/2)

)
+ (n + N − 2)

]
R

(N)

nl (r)

=
√

(n − l)(n + l + N − 2)

(
n + (N − 1)/2

n + (N − 3)/2

)2

R
(N)

n+1,l

[(
n + (N − 1)/2

n + (N − 3)/2

)
r

]
.

(4.21)

Finally, let us point out that, as we already mentioned in the introduction, some of
the above relations have also been obtained in other papers, e.g., the expressions (4.15),
(4.14), (4.20) and (4.21) correspond to the formulae (31), (32), (34) and (33) of [6, p 4767],
respectively; our relation (4.14) corresponds to (4.8) in [14, p 1070], and generalize
equations (40) of [21, p 182] and equation (1) of [22, p 472]; relation (4.15) is equivalent
to (4.9) in [14, p 1070], and generalize equation (43) of [21, p 182] and equation (2) of
[22, p 472]; equations (4.20) and (4.21) are equivalent to equation (8) of [18, p 4260]; the
relations (3.16–3.19) of [25, p 89] are particular cases of the relations (4.15), (4.14), (4.21),
(4.20), respectively.

5. Concluding remarks

In this paper we present a very simple and constructive approach for finding recurrence relations
for the radial wavefunctions of two very important systems: the isotropic harmonic oscillator
and the non-relativistic hydrogen atom in N dimensions. Some of the relations were discovered
by different methods (sometimes using very cumbersome calculations) and play a fundamental
role in several theories, e.g., the ladder relations are closly related to the factorization method
of Infeld and Hull for Sturm–Liouville problems, and some of them can be used for numerical
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computations of these functions. Furthermore, the method presented here is also valid for
other quantum systems such as, for instance, the Morse problem [21] and the relativistic
hydrogen atom [25], since the corresponding wavefunctions are proportional to the Laguerre
polynomials. Obviously, this method for finding recurrence relations can be extended to any
quantum system whose (radial) wavefunction is proportional to hypergeometric-typefunctions
(see, e.g., [5]).
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[21] Núñez-Yépez H N, López-Bonilla J L, Navarrete D and Salas-Brito A L 1997 Oscillators in one and two

dimensions and ladder operators for the Morse and Coulomb problems Int. J. Quantum Chem. 62 177–83
[22] Prunele E de 1983 Three-term recurrence relations for hydrogen wavefunctions: exact calculations and

semiclassical approximations J. Math. Phys. 25 472–80
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