
A GENERALIZATION OF THE CLASSICAL LAGUERRE POLYNOMIALS. 1R. �Alvarez-Nodarse and F. Marcell�anDepartamento de Ingenier��a. Escuela Polit�ecnica Superior.Universidad Carlos III de Madrid. Butarque 15, 28911, Legan�es, Madrid.Key words and phrases: Laguerre polynomials, discrete measures, hypergeometric functions.AMS (MOS) subject classi�cation:33C45.AbstractWe consider a modi�cation of the gamma distribution by adding a discrete measuresupported in the point x = 0. For large n we analyze the existence of orthogonal polynomialswith respect to such a distribution. Finally we represent them as the hypergeometricfunction 3F3:x1 Introduction.The study of orthogonal polynomials with respect to some modi�cations of a weight functionvia the addition of one or two delta Dirac measures started in a paper by H.L. Krall [10]. Infact, when the research of the polynomial solution of the fourth order di�erential equations suchas 4Xi=0 ai(x)Y (i)(x) = �nY (x);is realized, where ai(x) are polynomials of degree, at most, i, three new classes of polynomialsorthogonal with respect to a such kind of modi�cations appear:1. Laguerre-type case: e�x dx+M�(x) M > 0; x 2 IR+,2. Legendre-type case: �2 dx+ �(x� 1)2 + �(x+ 1)2 � > 0; x 2 (�1; 1),3. Jacobi-type case: (1� x)� dx+M�(x) � > �1; M > 0; x 2 (0; 1).Some authors have considered more general situations and they have studied some propertiesof the new classes of orthogonal polynomials; the algebraic properties of the new orthogonalpolynomials when a mass point outside the support of the measure is added (Chihara [4]),asymptotic properties in terms of the location of the mass point (Nevai [14]), distribution oftheir zeros (Buend��a et al. [3]), di�erential equations (Marcell�an and Maroni [12], Marcell�anand Ronveaux [13]) which they satisfy and so on. For two mass points, see the paper byKoornwinder [8] and Dra��di and Maroni [5].More recently, S.Belmehdi and F. Marcell�an [1] have considered, in the framework of linearfunctionals, a modi�cation using the �rst derivative of the delta Dirac measures. This question1To appear R.Circ.Mat. de Palermo. October 29, 1996.1



can be considered as a limit case of two masses located in two near points.In an other way, the denominators Qn of the main diagonal sequence for Pad�e approximantsof Stieltjes type meromorphic functions,Z d�(x)z � x + mXj=1 NjXi=0 Ai;j i!(z � cj)i+1 ANj ;j 6= 0;satisfy orthogonal relations such asZ p(x)Qn(x)d�(x) + mXj=1 NjXi=0 Ai;j(p(z)Qn(z))(i)z=cj = 0;where p(x) is a polynomial of degree at most n� 1, i.e., they are orthogonal with respect to amodi�cation of the measure � through Pmj=1PNji=0Ai;j�(i)(x� cj).Their study has known an increasing interest during the past years since their applicationsin approximation theory [11] and numerical integration [2] among other domains.In our paper, we consider a particular case (m = 1 and N1 = 1) and we analyze thecorresponding polynomials when � is the Laguerre measure. More precisely, we �nd explicitlysuch polynomials and identify them as a hypergeometric function. In other direction Koekoekand Meijer [6] (see also [7]) have considered some special inner products of Sobolev-type as< p; q >= Z 10 p(x)q(x)x�e�xdx+ NXk=0Mkp(k)(0)q(k)(0):Our case is very di�erent with respect to this one. In fact, if fMkgNk=0 are non-negative, thenthe above bilinear form is positive-de�nite. If we de�ne the bilinear form associated with thefunctional U (see formula (13) from below),(p; q) = Z 10 p(x)q(x)x�e�xdx+ NXk=0Mk(p(z)q(z))(k)z=0 ;this bilinear form is not positive de�nite and, even, in general is not quasi-de�nite. This meansthat the monic orthogonal polynomial sequence does not exists for all values of Mk.The structure of the paper is as follows. In Section 2 we provide the required backgroundof the Laguerre polynomials. In Section 3, we deduce an expression of the generalized Laguerrepolynomials L�;M0;M1n (x) in terms of the nth Laguerre polynomial and their �rst and secondderivative. Finally, in Section 4, we obtain its representation as a hypergeometric function 3F3.x2 Some Preliminar Results.In this section we have enclosed some formulas for the classical Laguerre polynomials whichare useful to obtain the generalized polynomials orthogonal with respect to the linear functional(13). All the formulas as well as some special properties for the classical Laguerre polynomialscan be found in a lot of books, see for instance the classical monograph Orthogonal Polynomialsby G. Szeg�o [17], Chapter 5.In this work we will use monic polynomials, i.e., the polynomials with leading coe�cientequal to 1, (Pn(x) = xn+ lower order terms).The classical Laguerre polynomials are the polynomial solution of the second order lineardi�erential equation of hypergeometric typex(L�n(x))00 + (�+ 1� x)(L�n(x))0 + nL�n(x) = 0: (1)2



They are orthogonal with respect to the linear functional L on the linear space of polynomialswith real coe�cients de�ned by< L; P > = Z 10 P (x)x�e�xdx ; � > �1: (2)The orthogonality relation isZ 10 L�n(x)L�m(x)x�e�xdx = �nm�(n+ �+ 1)n! = �nmd2n: (3)They satisfy the di�erentiation formula(L�n(x))(�) = n!(n� �)!L�+�n��(x) � = 0; 1; 2; ; :::; n = 0; 1; 2; :::; (4)where (L�n(x))(�) denotes the � times derivative of the function. Also the following structurerelation x(L�n(x))0 = nL�n(x) + (�+ n)nL�n�1(x): (5)holds.The Christo�el-Darboux formula is, in this situation,n�1Xm=0 L�m(x)L�m(y)�(m + �+ 1)m! = 1x� y L�n(x)L�n�1(y) � L�n�1(x)L�n(y)�(n+ �)(n� 1)! n = 1; 2; 3:::; (6)The classical Laguerre polynomials are represented as the hypergeometric seriesL�n(x) = (�1)n�(n+ �+ 1)�(�+ 1) 1F1 ��n�+1jx� ; (7)where pFq �b1;b2;:::;bqa1;a2;:::;ap jx� = 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k xkk! ;(a)0 := 1; (a)k := a(a+ 1)(a+ 2) � � � (a+ k � 1); k = 1; 2; 3; :::A consequence of this representation isL�n(0) = (�1)n�(n+ �+ 1)�(�+ 1) : (8)Now we will obtain an useful property of the Laguerre kernels (6). Taking derivates in thisformula with respect to y thenn�1Xm=0 L�m(x)(L�m)0(y)�(m + �+ 1)m! == 1(x � y) n�1Xm=0 L�m(x)L�m(y)�(m + �+ 1)m! + 1x� y L�n(x)(L�n�1)0(y) � L�n�1(x)(L�n)0(y)�(n+ �)(n� 1)! : (9)If we evaluate (6) and (8) in y = 0 and using (5), we obtainn�1Xm=0 L�m(x)L�m(0)�(m + �+ 1)m! = (�1)n�1�(�+ 1)n! (L�n)0(x); (10)3



n�1Xm=0 L�m(x)(L�m)0(0)�(m+ �+ 1)m! == (�1)n�1x�(�+ 1)n! (L�n)0(x) + (�1)n[(n� 1)L�n(x) + n(n+ �)L�n�1(x)x�(�+ 2)(n� 1)! == (�1)n�1x�(�+ 2)n! [(�+ 1)(L�n)0(x)� n(n� 1)L�n(x)� n2(n+ �)L�n�1(x)]: (11)If we use the second order di�erential equation (1) and the structure relation (5) we canobtain �nally n�1Xm=0 L�m(x)(L�m)0(0)�(m + �+ 1)m! = (�1)n�(�+ 2)n! [(L�n)00(x) + (n� 1)(L�n)0(x)]: (12)Formulas (10) and (12) will be used to obtain the expression (18).x3 The de�nition and orthogonal relation.Consider the linear functional U on the linear space of polynomials with real coe�cientsde�ned as < U ; P > = Z 10 P (x) x�e�xdx+M0P (0) +M1P 0(0) ; � > �1: (13)Notice that < U ; P >=< L; P > +M0P (0) +M1P 0(0) where L is the Laguerre's functional (2).For large n we will determine the monic polynomial L�;M0;M1n (x) which is orthogonal withrespect to the functional (13). The reason for this assumption is to guarantee the existence ofthe polynomials for all values of the masses M0 and M1.To obtain this we may write the generalized polynomials like a Fourier seriesL�;M0;M1n (x) = L�n(x) + n�1Xk=0 an;kL�k (x); (14)where L�n(x) denotes the classical Laguerre monic polynomial of degree n.To �nd the unknowns coe�cients an;k we can use the orthogonality of the polynomialsL�;M0;M1n (x) with respect to U , i.e.,< U ; L�;M0;M1n (x)L�k (x) >= 0 0 � k < n:Putting (14) in (13) we �nd:< U ; L�;M0;M1n (x)L�k (x) >==< L; L�;M0;M1n (x)L�k (x) > + M0L�;M0;M1n (0)L�k (0) ++ M1(L�;M0;M1n )0(0)L�k (0) + M1L�;M0;M1n (0)(L�k )0(0); (15)where (L�;M0;M1n )0(0) and (L�n)0(0) denote the �rst derivatives of the generalized and the classicalLaguerre polynomials, respectively, evaluated in x = 0. If we use the decomposition (14) andtaking into account the orthogonality of the classical Laguerre polynomials with respect to thelinear functional L, hence the coe�cients an;k are given by:4



an;k = �M0L�;M0;M1n (0)L�k (0) +M1(L�;M0;M1n )0(0)L�k (0) +M1L�;M0;M1n (0)(L�k )0(0)d2k ; (16)where by d2k we will denote the norm of the classical Laguerre polynomials (3). Finally theequation (14) provides us the expressionL�;M0;M1n (x) = L�n(x)�M0L�;M0;M1n (0) n�1Xk=0 L�k (0)L�k (x)d2k ��M1(L�;M0;M1n )0(0) n�1Xk=0 L�k (0)L�k (x)d2k ��M1L�;M0;M1n (0) n�1Xk=0 (L�k )0(0)L�k (x)d2k ; (17)In order to obtain an explicit expression for the polynomials we need some properties ofthe classical Laguerre polynomials. Doing some algebraic calculations in (17) and taking intoaccount formulas (10) and (12), we obtain the following expression for the generalized Laguerrepolynomials : L�;M0;M1n (x) = L�n(x) + A1(L�n)0(x) +A2(L�n)00(x); (18)whereA1 = (�1)n[M0L�;M0;M1n (0) +M1(L�;M0;M1n )0(0)]�(�+ 1)n! � (�1)nM1(n� 1)L�;M0;M1n (0)�(�+ 2)n! ; (19)A2 = � (�1)nM1L�;M0;M1n (0)�(�+ 2)n! : (20)In the representation (18) appear the values of the polynomials L�;M0;M1n (x) and their �rstderivatives evaluated in x = 0. Then, to obtain the analytical expression of A1 and A2 issu�cient to evaluate (18) and its derivative in x = 0. The solution of these two equations yieldsL�;M0;M1n (0) = ������� (�1)nn!(n+�n ) M1�(�+1)(n+�n�1 )�(�1)nn!(n+�n�1 ) 1� M1�(�+1)(n+�n�2 ) �������������� 1 + M0�(�+1)(n+�n�1 )� M1�(�+1)(n+�n�2 ) M1�(�+1)(n+�n�1 )� M0�(�+1)(n+�n�2 ) + M1�(�+2) n(�+2)���1(n�2) (n+�n�3 ) 1� M1�(�+1)(n+�n�2 ) ������� ; (21)and (L�;M0;M1n )0(0) == ������� 1 + M0�(�+1) (n+�n�1 ) � M1�(�+1)(n+�n�2 ) (�1)nn!(n+�n )� M0�(�+1)(n+�n�2 ) + M1�(�+2) n(�+2)���1(n�2) (n+�n�3 ) �(�1)nn!(n+�n�1 ) �������������� 1 + M0�(�+1)(n+�n�1 )� M1�(�+1)(n+�n�2 ) M1�(�+1)(n+�n�1 )� M0�(�+1)(n+�n�2 ) + M1�(�+2) n(�+2)���1(n�2) (n+�n�3 ) 1� M1�(�+1)(n+�n�2 ) ������� : (22)In formulas (21) and (22) the denominator take the form:5



1 + M0(�+ 1)n(n� 1)!�(�+ 2) � M1(� + 1)n(n� 2)!�(�+ 3) � M21 (�+ 1)2n(n� 2)!2�(�+ 3)2 n+ �+ 1(n � 1)(�+ 3)(�+ 1)where (�+ 1)n is the shifted factorial or Pochhamer symbol de�ned by(a)0 := 1; (a)k := a(a + 1) � � � (a+ k � 1):Now if we use the asymptotic formula for the Gamma function [15] (formula 8.16 page 88)�(x) � e�xxxr2�x ; x >> 1; x 2 IR;then for large n we obtain the following asymptotic relation for the denominator in (21) and(22): 1 + M0n�+1�(�+ 1)�(�+ 2) � 2M1(n� 1)n�+1�(�+ 1)�(�+ 3) � M21 (n � 1)(n+ �+ 1)n2�+2�(�+ 1)�(�+ 2)�(�+ 3)�(�+ 4)This means, that for any �xed M0 and M1 and for su�ciently large n the denominator couldbe taken as O(�n2�+4), i.e., for large n we can guarantee the existence of the polynomials forall values of the masses M0 and M1.A very simple consequence of (18) is an operational Viskov-type formula for the generalizedpolynomials. From a result by Viskov (see [18] and [16]) a new representation for the Laguerrepolynomials via a second order di�erential operator isL�n(x) = ex[xD2 + (�+ 1)D]n(e�x); (23)where D := ddx is the usual di�erential operator. Using this formula as well as (18), we obtainthe following operational representation for the polynomial L�;M0;M1n (x)L�;M0;M1n (x) = ex[1 +A1 + A2 + (A1 + 2A2)D + A2D2][xD2 + (�+ 1)D]n(e�x);or L�;M0;M1n (x) = ex[1 + L2(A1; A2)][xD2 + (�+ 1)D]n(e�x);where L2(A1; A2) = A1+A2+(A1+2A2)D+A2D2 is a second order di�erential operator. WhenM0 = M1 = 0 it is straighforward that the last formula becomes into the classical representation.For this reason it could be considered as a perturbation of the formula by Viskov (23).x4 Representation as hypergeometric series.In this section we will prove the following proposition:Proposition 1 The orthogonal polynomial L�;M0;M1n (x) is, up to a constant factor, a generalizedhypergeometric serie. More preciselyL�;M0;M1n (x) = (�1)n�(n + �+ 1)(1 +A1 + A2)�0�1�(�+ 3) 3F3 ��n;�0+1;�1+1�+3; �0; �1 jx� :Proof: From (18) and the hypergeometric representation of the Laguerre polynomials (7) wecan write L�;M0;M1n (x) == (�1)n�(n+ �+ 1)�(�+ 1) 1Xm=0 � (�n)m(� + 1)m + A1(�n)m+1(� + 1)m+1 + A2(�n)m+2(�+ 1)m+2 � xmm!6



or, equivalently,L�;M0;M1n (x) = (�1)n�(n+ �+ 1)�(�+ 1) 1Xm=0 xm(�n)mm! �(m + �+ 1)(m + �+ 2) + (m + �+ 2)(m � n)A1 + (m � n)(m � n + 1)A2(� + 1)m+2 :Taking into account that the expression 1 + A1 + A2 6= 0 as well as the expression inside thecuadratic brackets is a polynomial in m of degree 2, we can writeL�;M0;M1n (x) == (�1)n�(n+ �+ 1)(1 + A1 +A2)�(�+ 1) 1Xm=0 (�n)m(m+ �0)(m + �1)(�+ 1)m+2 xmm! ; (24)where �i = �i(n; �;A1; A2). Since(m + �i) = �i(�i + 1)m(�i)m ; i = 0; 1 (25)then (24) becomes L�;M0;M1n (x) = (�1)n�(n+ �+ 1)(1 + A1 +A2)�0�1�(�+ 3) �� 1Xm=0 (�n)m(�0 + 1)m(�1 + 1)m(�0)m(�1)m(�+ 3)m xmm! ; (26)or in terms of the hypergeometric seriesL�;M0;M1n (x) == (�1)n�(n+ �+ 1)(1 + A1 +A2)�0�1�(�+ 3) 3F3 ��n;�0+1;�1+1�+3; �0; �1 jx� : (27)Here the coe�cients �0 and �1 are the solutions of a second order equation at m (See formula(24)) and they are, in general, complex numbers. In the case when for some k, �k is a nonpositiveinteger we need to take the analytic continuation of the hypergeometric series (27). Solving thesecond order equation in m we �nd�0;1 = 2�+ 3 + (�+ 2� n)A1 � (2n� 1)A2(1 +A1 + A2) [1�pD(n;A1; A2)]; (28)where D(n;A1; A2) == 1� 4(1 +A1 + A2)(n(n� 1)A2 + n(�� 2)A1 + (�+ 1)(�+ 2))[2�+ 3 + (�+ 2� n)A1 � (2n� 1)A2)]2 : (29)Equation (27) can be rewritten in the formL�;M0;M1n (x) = (�1)n�(n+ �+ 1)�(�+ 3) �� (1 �D(n;A1; A2)[2�+ 3 + (� + 2� n)A1 � (2n� 1)A2]2(1 +A1 + A2) 3F3 ��n;�0+1;�1+1�+3; �0; �1 jx� : (30)7
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