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Abstract

We consider a modification of the gamma distribution by adding a discrete measure
supported in the point x = 0. For large n we analyze the existence of orthogonal polynomials
with respect to such a distribution. Finally we represent them as the hypergeometric
function 3 Fs.

§1 Introduction.

The study of orthogonal polynomials with respect to some modifications of a weight function
via the addition of one or two delta Dirac measures started in a paper by H.L. Krall [10]. In
fact, when the research of the polynomial solution of the fourth order differential equations such
as

: ai()Y () = MY (),

+=0

is realized, where a;(x) are polynomials of degree, at most, 4, three new classes of polynomials
orthogonal with respect to a such kind of modifications appear:

1. Laguerre-type case: e de+ Mé(x) M>0zeRT,

Sz —1 ) 1
2. Legendre-type case: % dr + (a:2 ) + (a:2—|— ) a>0 ze(-11),
3. Jacobi-type case: (l1—u)de+Mé(z) a>-1, M>0, zec(0,1).

Some authors have considered more general situations and they have studied some properties
of the new classes of orthogonal polynomials; the algebraic properties of the new orthogonal
polynomials when a mass point outside the support of the measure is added (Chihara [4]),
asymptotic properties in terms of the location of the mass point (Nevai [14]), distribution of
their zeros (Buendia et al. [3]), differential equations (Marcelldn and Maroni [12], Marcellan
and Ronveaux [13]) which they satisfy and so on. For two mass points, see the paper by
Koornwinder [8] and Draidi and Maroni [5].

More recently, S.Belmehdi and F. Marcelldn [1] have considered, in the framework of linear
functionals, a modification using the first derivative of the delta Dirac measures. This question
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can be considered as a limit case of two masses located in two near points.

In an other way, the denominators @, of the main diagonal sequence for Padé approximants
of Stieltjes type meromorphic functions,

dp(x m N i
/%4—;;1%4@ AN, i #0,

satisfy orthogonal relations such as
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where p(x) is a polynomial of degree at most n — 1, i.e., they are orthogonal with respect to a

modification of the measure 41 through 370, Zf\go A ;69 (x — ).

Their study has known an increasing interest during the past years since their applications
in approximation theory [11] and numerical integration [2] among other domains.

In our paper, we consider a particular case (m = 1 and N; = 1) and we analyze the
corresponding polynomials when g is the Laguerre measure. More precisely, we find explicitly
such polynomials and identify them as a hypergeometric function. In other direction Koekoek
and Meijer [6] (see also [7]) have considered some special inner products of Sobolev-type as

¢S] N
<pg>= / pla)g(z)e®e " dz + > Mpp™(0)¢™)(0).
0 k=0

Our case 18 very different with respect to this one. In fact, if {Mk}fcvzo are non-negative, then
the above bilinear form is positive-definite. If we define the bilinear form associated with the
functional U (see formula (13) from below),

oo N
_ k
(v.0) = / plea(a)e®e™de + 3~ Mi(p(=)a(=) {2,
0 k=0
this bilinear form is not positive definite and, even, in general is not quasi-definite. This means
that the monic orthogonal polynomial sequence does not exists for all values of Mj,.

The structure of the paper is as follows. In Section 2 we provide the required background
of the Laguerre polynomials. In Section 3, we deduce an expression of the generalized Laguerre
polynomials L% #o-Mi(z) in terms of the nth Laguerre polynomial and their first and second
derivative. Finally, in Section 4, we obtain its representation as a hypergeometric function s Fjs.

§2 Some Preliminar Results.

In this section we have enclosed some formulas for the classical Laguerre polynomials which
are useful to obtain the generalized polynomials orthogonal with respect to the linear functional
(13). All the formulas as well as some special properties for the classical Laguerre polynomials
can be found in a lot of books, see for instance the classical monograph Orthogonal Polynomials

by G. Szego [17], Chapter 5.

In this work we will use monic polynomials, i.e., the polynomials with leading coefficient
equal to 1, (Py(2) = 2™+ lower order terms).

The classical Laguerre polynomials are the polynomial solution of the second order linear
differential equation of hypergeometric type

2(Ly(2))" + (a4 1= 2)(Ly(2)) + nly(z) = 0. (1)



They are orthogonal with respect to the linear functional £ on the linear space of polynomials
with real coefficients defined by

<L, P> = / P(x)z®e "de a>—1. (2)
0
The orthogonality relation is

/ Li(x)Ly (2)x%e "de = pmT(n+ o+ Dn! = 6nmdi. (3)
0

They satisfy the differentiation formula

!
(La(e)®) =~ LoH () v=0,1,2,,...., n=01,2 ., (4)

(n—v)!

where (L2 (%)) denotes the v times derivative of the function. Also the following structure
relation

w(Ly(x)) = nly(x) + (o + n)nly i (x). (5)
holds.
The Christoffel-Darboux formula is, in this situation,
n—1 o o o a
Ly@) Iy 1 Lp@)Li (y) — Ly 1 ()L (y) _
E = n=1273.., (6)
— T'(m+ a+ 1)m! r—y T'(n+ a)(n—1)!

The classical Laguerre polynomials are represented as the hypergeometric series

s = SRR R GhR), g

where
k

bbevo 1) _ N (@)k(a2)y - (ap)y 2F
PFq (al,ag,...,ap $) = Z:: (bl) (bz)k . (bq)k A

k=0 k

(a)o =1, (a)p:=ala+1)(a+2)---(a+k—-1), k=1,2,3, ..

A consequence of this representation is

LE(0) = (—1)’;1;((171—1——1—1(; + 1). (8)

Now we will obtain an useful property of the Laguerre kernels (6). Taking derivates in this
formula with respect to y then

1

L)) _
— T'(m+ a+ 1)m!
(9)
_ ! Z Ly (x) L, (v) L Ly@)(La_y)'(v) = Loy (2)(L5)' (v)
(x —y) — Tm+a+1)m!  z—y T'(n+ a)(n—1)! ’

If we evaluate (6) and (8) in y = 0 and using (5), we obtain

n—1

Ly (2) L2 (0 Sl
Z—:o F(mizwr (1)371! N F((Oz—I)—l)n!(L”) (), (10)




n—1

Le(@)(E8)(0) _

rnzz:() IF'im+a+ 1)m! -

L (Pl = D) + o+ ) ()

~ 2l(a+ )n! () (@) + 2T(a+2)(n — 1)! B ()
— (e DY)~ nl = DEE) = 20+ )L ()]

If we use the second order differential equation (1) and the structure relation (5) we can
obtain finally

n—1

> rﬁ%@(fi)l;% - r(i_i);m[@ﬁ)“(x) +(n = 1)(L3) (x)]- (12)

Formulas (10) and (12) will be used to obtain the expression (18).

§3 The definition and orthogonal relation.

Consider the linear functional ¢/ on the linear space of polynomials with real coefficients

defined as
<U,P > :/ P(z) 2% "dz + MoP(0)+ M1 P'(0) ,a > —1. (13)
0

Notice that < U, P >=< L, P > +MyP(0) + M; P'(0) where L is the Laguerre’s functional (2).

For large n we will determine the monic polynomial L&#oM1(z) which is orthogonal with
respect to the functional (13). The reason for this assumption is to guarantee the existence of
the polynomials for all values of the masses My and M;.

To obtain this we may write the generalized polynomials like a Fourier series

n—1
LMo () = 12 () + 3 an L5 (2), (14)
k=0

where L& (x) denotes the classical Laguerre monic polynomial of degree n.

To find the unknowns coefficients @, ; we can use the orthogonality of the polynomials
LeMo My () with respect to U, i.e.,

<U, LOMoM LY () >=0 0<k<n.
Putting (14) in (13) we find:
<U, LEMoMi(p)[2(2) >=
=< L, LoMoMi(pyLe(z) > + MoLoMoMi(0)L2(0) + (15)
+ MLy MMy ()L (0) 4 MyLypMeM(0) (L) (0),

where (L2MoM1y/(0) and (L2)(0) denote the first derivatives of the generalized and the classical
Laguerre polynomials, respectively, evaluated in # = 0. If we use the decomposition (14) and
taking into account the orthogonality of the classical Laguerre polynomials with respect to the
linear functional £, hence the coefficients a,,  are given by:



o= Mo LM (0)LE(0) + My (LMo )(0) LR (0) 4 My LMo (0)(LE)'(0) (16)
nk — —
) d% ’

where by di we will denote the norm of the classical Laguerre polynomials (3). Finally the
equation (14) provides us the expression

LgMeMi(a) = L(e) - MaLg Mo (0 Zi(oﬁéa( -
~an gty o)y SO (1)

In order to obtain an explicit expression for the polynomials we need some properties of
the classical Laguerre polynomials. Doing some algebraic calculations in (17) and taking into
account formulas (10) and (12), we obtain the following expression for the generalized Laguerre
polynomials :

LMo (@) = Li(a) + A (Ly) (2) + As(Ly) (@), (18)
where
_ (=) [Mo Ly Mo M (0) + My (LMo My (0)]  (=1)" My(n — 1) LgMeMi(0)
A= I'(a+ 1)n! B T(a+ 2)n! ; (19)
(=DM LMo M)
Az == [(o + 2)n! ' (20)

In the representation (18) appear the values of the polynomials L&#oM1(z) and their first
derivatives evaluated in @ = 0. Then, to obtain the analytical expression of A; and A, is
sufficient to evaluate (18) and its derivative in # = 0. The solution of these two equations yields

(=D)mn!("h) F(Jc‘:[+1)(z+?)

—(=DalGEY) - ()

n—1 T(a+1)
LMo 0y = : (21)
1+ F(oz+1)( * ) F(oz+1)(n+2) F(Jgj-l)(ni—l)
n+a 1 nla+2)—a—1/n+a n+a
F(Jc‘g+1)(n+2)+ F(Jc‘g+2) ( (n—)Z) (ni—S) 1— F(a+1)(n+2)
and
(Lo (0) =
L+ et (09 — i (59) (=1)"nl("3%)
_ | G + i T G ()G (22)
T 2 ) — i () -
n+a ;. nla+2)—a—1 nta n+a
F(Jc‘g+1)(n+2) + F(Jc‘g+2) ( (n—)Z) (ni—S) 1- F(a+1)(n+2)

In formulas (21) and (22) the denominator take the form:



- Mo(a+1)n  Mi(a4+1),  Mi(a+1) n+a+l
(n—DM(a+2) (=2 T(a+3) n-2)T(a+3)?n-1)(a+3)(a+1)

where (a4 1), is the shifted factorial or Pochhamer symbol defined by

(a)o =L (a)p:=ala+1) - (a+k—1).

Now if we use the asymptotic formula for the Gamma function [15] (formula 8.16 page 88)

2
F(x)rve_xxxw—ﬂ-, r>>1,zeR,
x

then for large n we obtain the following asymptotic relation for the denominator in (21) and

(22):

-, Monot! 3 2My(n — 1)no+t 3 ME(n —1)(n+ a + 1)n?o+?
Mo+ 1DI(e+2) T(e+1DI(e+3) T(ae+1)T(a+2)T(a+3)(a+4)

This means, that for any fixed My and M; and for sufficiently large n the denominator could
be taken as O(—n?*t%) i.e., for large n we can guarantee the existence of the polynomials for
all values of the masses My and M;.

A very simple consequence of (18) is an operational Viskov-type formula for the generalized
polynomials. From a result by Viskov (see [18] and [16]) a new representation for the Laguerre
polynomials via a second order differential operator 1s

L2(z) = e"[xD* + (a + 1)D]"(e™), (23)
where D := % is the usual differential operator. Using this formula as well as (18), we obtain

the following operational representation for the polynomial L&Mo:Mi(z)
LoMoMy(p) = e"[1 4+ Ay 4+ Ay + (A1 + 242)D + A D?|[D* + (a + 1) D] (e™7),

or

Lg’MD’Ml(l‘) = [l + Lz(Al,Az)][l‘Dz + (a4 1)D]*(e™7),

where Ly(A1, As) = A1+ As+(A1 +245) D+ A3 D? is a second order differential operator. When
My = M7 = 01t is straighforward that the last formula becomes into the classical representation.
For this reason it could be considered as a perturbation of the formula by Viskov (23).

54 Representation as hypergeometric series.
In this section we will prove the following proposition:

Proposition 1 The orthogonal polynomial LEMoM1(z) is, up to a constant factor, a generalized
hypergeometric serie. More precisely

oMoty (CDT(n+a+ D1+ A + A2)B0 5 —n,Bo+1,01+1
Ln ($) - F(O{ _|_ 3) 3F3 (Oz-I—B7 Bo, B |$) .

Proof: From (18) and the hypergeometric representation of the Laguerre polynomials (7) we
can write

Lg,Mu,Ml(x) —

_ (=Dt a4l i [ (=)m | A(=n)msa Az(—”)m+2] 2™

T(a+1) — (a4 1)m (a4 Dy (a4 D)mgo m!



or, equivalently,

m
Lg,Mu,Ml(x) —

(=D)"T(n+a+1) ix
Tae+1) —

m=0

(m+a+l)(im+a+2)+(m+a+2)(m—n)Ai+(m—n)(m—n+1)A4,
(@ + 1)z '

Taking into account that the expression 1 + Ay + Az # 0 as well as the expression inside the
cuadratic brackets is a polynomial in m of degree 2, we can write

Lg,Mu,Ml(x) —

_ (UMb o DL A dy) 5 (ot )m  By) 2 @9
o T(a+1) — (o + Dmyo m!’
where §; = Gi(n, o, A1, A2). Since

(m+ ;) =

then (24) becomes

(=D)"T(n+a+ D1+ A1 + A2)B5 "

Lg,Mu,Ml(x) —

I'(a+3)
U (Bt D 2™ )
% Z 60 + Im (@4 3)m m!’
or in terms of the hypergeometric series
LMo (2) =
(27)

_ D) et a+ DA+ A+ A2)Bof Cm%“ﬁﬁw@
F(Oz—|—3) 353 \a+3, Bo, B )

Here the coefficients Gy and #; are the solutions of a second order equation at m (See formula
(24)) and they are, in general, complex numbers. In the case when for some k, 55, is a nonpositive
integer we need to take the analytic continuation of the hypergeometric series (27). Solving the
second order equation in m we find

Gyt = 204+ 34+ (o +2—n)A1 — (2n— 1) A, [+ /7D(n,A1,A2)], (28)

(1+ 4+ Ay)
where
D(n, Ay, As) =
(29)
1 414+ A1+ Az)(n(n — DAy + n(a— 2)A1 + (o + (o + 2))
N 2a+3+(a+2—n)4; —(2n— 1)A49)]? '
Equation (27) can be rewritten in the form
-)'T(n+a+1)
Loz,MD,Ml — (
(30)

« (1 - D(n’ Al,Az)[QOé +3+ (a +2- n)Al — (277' — 1)A2]2 F (—n,ﬁu+1,51+1|x)
(1—|—A1 —|—A2) 353 \a+3, Bo, /i .



It is straighforward to show that for My = M; = 0 the hypergeometric function (27) becomes

. (—1)"T(n+ o+ 1) —n,0+2,a+3
L) = —=05 oFs () =
(31)
D" I'(n4+a+1 —_n @
_ Lk Gl = 250

Ia+1)
So (27) can be considered as a generalization of the representation as hypergeometric series of
the classical Laguerre polynomials L% (z). m
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