
Fatorization method for di�erene equations ofhypergeometri type on nonuniform latties �R. �Alvarez-Nodarseyz and R. S. Costas-Santosyy Departamento de An�alisis Matem�atio.Universidad de Sevilla. Apdo. 1160, E-41080 Sevillaz Instituto Carlos I de F��sia Te�oria y Computaional,Universidad de Granada, E-18071 Granada, Spain24th May 2001AbstratWe study the fatorization of the hypergeometri-type di�erene equation ofNikiforov and Uvarov on nonuniform latties. An expliit form of the raising andlowering operators is derived and some relevant examples are given.1 IntrodutionIn this paper we will deal with the so-alled fatorization method (FM) of the hypergeo-metri-type di�erene equations on nonuniform latties. The FM was already used byDarboux [14℄ and Shr�odinger [25, 26℄ to obtain the solutions of di�erential equations,and also by Infeld and Hull [16℄ for �nding analytial solutions of ertain lasses ofseond order di�erential equations. Later on, Miller extended it to di�erene equations[20℄ and q-di�erenes {in the Hahn sense{ [21℄. For more reent works see e.g. [4, 10,11, 29, 30℄ and referenes therein.The lassial FM was based on the existene of a so-alled raising and lowering op-erators for the orresponding equation that allows to �nd the expliit solutions in a veryeasy way. Going further, Atakishiyev and oauthors [4, 6, 10℄ have found the dynamialsymmetry algebra related with the FM and the di�erential or di�erene equations. Ofspeial interest was the paper by Smirnov [27℄ in whih the equivalene of the FM andthe Nikiforov et all theory [23℄ was shown, furthermore this paper pointed out thatthe aforementioned equivalene remains valid also for the nonuniform latties that wasshown later on in [28, 29℄. In partiular, in [29℄ a detailed study of the FM and itsequivalene with the Nikiforov et al. approah to di�erene equations [23℄ have been es-tablished. Also, in [12℄, a speial nonuniform lattie was onsidered. In fat, in [12℄ theauthor onstruted the FM for the Askey{Wilson polynomials using basially the dif-ferene equation for the polynomials. In the present paper we will ontinue the researhof the nonuniform lattie ase. In fat, following the idea by Bangerezako [12℄ for theAskey{Wilson polynomials and Lorente [18℄ for the lassial ontinuous and disreteases, we will obtain the FM for the general polynomial solutions of the hypergeometridi�erene equation on the general quadrati nonuniform lattie x(s) = 1qs+2q�s+3.�Submitted to J. Phys. A: Math. Gen. 1



We will use, as it is already suggested in [6, 27℄, not the polynomial solutions but theorresponding normalized funtions whih is more natural and useful. In suh a way,the method proposed here is the generalization of [12℄ and [18℄ to the aforementionednonuniform lattie.The struture of the paper is as follows. In Setion 2 we present some well-knownresults on orthogonal polynomials on nonuniform latties [7, 23, 24℄, in setion 3 weintrodue the normalized funtions and obtain some of their properties suh as thelowering and raising operator that allow us, in Setion 4, to obtain the fatorizationfor the seond order di�erene equation satis�ed by suh funtions. Finally, in Setion5, some relevant examples are worked out.2 Some basi properties of the q-polynomialsHere, we will summarize some of the properties of the q-polynomials useful for the restof the work. For further information see e.g. [23℄.We will deal here with the seond order di�erene equation of the hypergeometri type�(s) ��x(s� 12) �ry(s)rx(s)�+ �(s)�y(s)�x(s) + �y(s) = 0;�(s) = ~�(x(s))� 12 ~�(x(s))�x(s� 12); �(s) = ~�(x(s)); (1)where rf(s) = f(s)� f(s� 1) and �f(s) = f(s+ 1)� f(s) denote the bakward andforward �nite di�erene derivatives, respetively, ~�(x(s)) and ~�(x(s)) are polynomialsin x(s) of degree at most 2 and 1, respetively, and � is a onstant. In the following,we will use the following notation for the oeÆients in the power expansions in x(s)of ~�(s) and ~�(s)~�(s) � ~�[x(s)℄ = ~�002 x2(s) + ~�0(0)x(s) + ~�(0); ~�(s) � ~� [x(s)℄ = ~� 0x(s) + ~�(0): (2)An important property of the above equation is that the k-order di�erene derivativeof a solution y(s) of (1), de�ned byyk(s)q = ��xk�1(s) ��xk�2(s) : : : ��x(s)y(s) � �(k)y(s);also satis�es a di�erene equation of the hypergeometri type�(s) ��xk(s� 12) �ryk(s)qrxk(s) �+ �k(s)�yk(s)q�xk(s) + �kyk(s)q = 0; (3)where xk(s) = x(s+ k2 ) and [23, page 62, Eq. (3.1.29)℄�k(s) = �(s+ k)� �(s) + �(s+ k)�x(s+ k � 12)�xk�1(s) ; �k = �+ k�1Xm=0 ��m(s)�xm(s) : (4)It is important to notie that the above di�erene equations have polynomial solutionsof the hypergeometri type i� x(s) is a funtion of the form [7, 24℄x(s) = 1(q)qs + 2(q)q�s + 3(q) = 1(q)[qs + q�s��℄ + 3(q); (5)2



where 1, 2, 3 and q� = 12 are onstants whih, in general, depend on q [23, 24℄. Forthe above lattie, a straightforward alulation shows that �k(s) is a polynomial of �rstdegree in xk(s) of the form (see e.g. [7℄)�k(s) = ~� 0kxk(s) + ~�k(0); ~� 0k = [2k℄q ~�002 + �q(2k)~� 0;~�k(0) = 3e�002 (2[k℄q � [2k℄q) + e�0(0)[k℄q + 3� 0(�q(k)� �q(2k)) + ~�(0)�q(k); (6)where the q-numbers [k℄q and �q(k) are de�ned by[k℄q = q k2 � q� k2q 12 � q� 12 ; �q(k) = q k2 + q� k22 ; (7)and [n℄q! are the q-fatorials [n℄q! = [1℄q[2℄q � � � [n℄q.Both di�erene equations (1) and (3) an be rewritten in the symmetri form��x(s� 12) ��(s)�(s)ry(s)rx(s)�+ �n�(s)y(s) = 0;and ��xk(s� 12) ��(s)�k(s)ryk(s)rxk(s)�+ �k�k(s)yk(s) = 0;where �(s) and �k(s) are the weight funtions satisfying the Pearson-type di�ereneequations4�x(s� 12) [�(s)�(s)℄ = �(s)�(s) ; 4�xk(s� 12) [�(s)�k(s)℄ = �k(s)�k(s); (8)respetively. In [23℄ it is shown that the polynomial solutions of (3) (and so the poly-nomial solutions of (1)) are determined by the q-analogue of the Rodrigues formula onthe nonuniform latties��xk�1(s) � � � ��x(s)Pn(x(s))q � �(k)Pn(x(s))q = An;kBn�k(s) r(n)k �n(s); (9)where r(n)k f(s) = rrxk+1(s) rrxk+2(s) � � � rrxn(s) f(s):An;k = [n℄q![n� k℄q! k�1Ym=0��q(n+m� 1)e� 0 + [n+m� 1℄q e�002 � (10)Thus [23, page 66, Eq. (3.2.19)℄Pn(x(s))q = Bn�(s)r(n)�n(s); r(n) � rrx1(s) rrx2(s) � � � rrxn(s) ; (11)where �n(s) = �(s+ n) nYk=1�(s+ k) and�n = �[n℄q ��q(n� 1)e� 0 + [n� 1℄q e�002 � : (12)3



In this paper we will deal with orthogonal q-polynomials and funtions. It an beproven [23℄, by using the di�erene equation of hypergeometri-type (1), that if theboundary ondition �(s)�(s)xk(s� 12)���s=a;b = 0; 8k � 0; (13)holds, then the polynomials Pn(s)q are orthogonal, i.e.,b�1Xs=a Pn(x(s))qPm(x(s))q�(s)�x(s� 12) = Ænmd2n; s = a; a+ 1; : : : ; b� 1; (14)where �(s) is a solution of the Pearson-type equation (8). In the speial ase of thelinear exponential lattie x(s) = qs the above relation an be written in terms of theJakson q-integral (see e.g. [15, 17℄) R z2z1 f(t)dqt, de�ned byZ z2z1 f(t)dqt = Z z20 f(t)dqt� Z z10 f(t)dqt;where Z z0 f(t)dqt = z(1� q) 1Xk=0 f(zqk)qk; 0 < q < 1;as follows:Z qbqa Pn(t)qPm(t)q!(t)dqt = Ænmq1=2d2n; t = qs; !(t) � !(qt) = �(t): (15)Notie that the above boundary ondition (13) is valid for k = 0. Moreover, if weassume that a is �nite, then (13) is ful�lled at s = a providing that �(a) = 0 [23, x3.3,page 70℄. In the following we will assume that this ondition holds. The squared normin (14) is given by [23, Chapter 3, Setion 3.7.2, pag. 104℄d2n = (�1)nAn;nB2n b�n�1Xs=a �n(s)�xn(s� 12):There is also a so-alled ontinuous orthogonality. In fat, if there exist a ontour �suh that Z��[�(z)�(z)xk(z � 12)℄ dz = 0; 8k � 0; (16)then [23℄ Z� Pn(x(z))qPm(x(z))q�(z)�x(z � 12) dz = 0; n 6= m:A simple onsequene of the orthogonality is the following three term reurrene rela-tion: x(s)Pn(x(s))q = �nPn+1(x(s))q + �nPn(x(s))q + nPn�1(x(s))q; (17)where �n, �n and n are onstants. If Pn(s)q = anxn(s)+ bnxn�1(s)+ � � � ; then using(17) we �nd �n = anan+1 ; �n = bnan � bn+1an+1 ; n = an�1an d2nd2n�1 : (18)To obtain the expliit values of �n, �n we will use the following lemma, {interesting inits own right{ that an be proven by indution:4



Lemma 2.1�(k)xn(s) = [n℄q![n� k℄q!xn�kk (s)+3�n [n� 1℄q![n� k � 1℄q! � (n� k) [n℄q![n� k℄q!�xn�k�1k (s)+� � � :In the ase k = n� 1, it beomes�(n�1)xn(s) = [n℄q!xn�1(s) + 3[n� 1℄q! (n� [n℄q) : (19)Now, using the Rodrigues formula (9) for k = n� 1,�(n�1)Pn(x(s))q = An;n�1Bn�n�1(s) r(n)n�1�n(s) = An;n�1Bn�n�1(s) rrxn(s)�n(s);as well as the identities �n(s) = �n�1(s + 1)�(s + 1), xn(s) = xn�1(s + 12 ) and thePearson equation (8) for �n�1(s), we �nd�(n�1)Pn(x(s))q = An;n�1Bn�n�1(s):Thus an = An;n�1Bn~� 0n�1[n℄q! = Bn n�1Yk=0��q(n+ k � 1)~� 0 + [n+ k � 1℄q ~�002 � ;and bnan = [n℄q~�n�1(0)~� 0n�1 + 3([n℄q � n):So�n = BnBn+1 �q(n� 1)~� 0+[n� 1℄q ~�002(�q(2n�1)~� 0+[2n�1℄q ~�002 )(�q(2n)~� 0+[2n℄q ~�002 ) = � BnBn+1 �n[n℄q [2n℄q�2n [2n+ 1℄q�2n+1and �n = [n℄q~�n�1(0)~� 0n�1 � [n+ 1℄q~�n(0)~� 0n + 3([n℄q + 1� [n+ 1℄q):Using the Rodrigues formula the following di�erene-reurrent relation follows [1, 23℄�(s)rPn(x(s))qrx(s) = �n[n℄q� 0n ��n(s)Pn(x(s))q � BnBn+1Pn+1(x(s))q� ;where �n(s) is given by (6), where the identity ~� 0n = � �2n+1[2n+ 1℄q has been used.Then, using the expliit expression for the oeÆient �n, we �nd�(s)rPn(x(s))qrx(s) = �n[n℄q �n(s)� 0n Pn(x(s))q � �n�2n[2n℄q Pn+1(x(s))q: (20)This equation de�nes a raising operator in terms of the bakward di�erene in thesense that we an obtain the polynomial Pn+1 of degree n + 1 from the lower degreepolynomial Pn.From the above equation and using the identity r = ��r�, the seond order di�er-ene equation and the three terms reurrene relation we �nd [1℄ lowering-type operator:[�(s) + �(s)�x(s� 12 )℄�Pn(x(s))q�x(s) = n�2n[2n℄q Pn�1(x(s))q+� �n[n℄q �n(s)� 0n � �n�x(s� 12 )� �2n[2n℄q (x(s)� �n)�Pn(x(s))q: (21)5



The most general polynomial solution of the q-hypergeometri equation (1) orrespondsto the ase�(s) = A 4Yi=1[s� si℄q = Cq�2s 4Yi=1(qs � qsi); A;C;not vanishing onstants (22)and has the form [24℄Pn(s)q = Dn 4�3� q�n; q2�+n�1+P4i=1si ; qs1�s; qs1+s+�qs1+s2+�; qs1+s3+�; qs1+s4+� ; q ; q� ; (23)where Dn is a normalizing onstant and the basi hypergeometri series p�q are de�nedby [17℄ r�p� a1; : : : ; arb1; : : : ; bp ; q ; z� = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k h(�1)kq k2 (k�1)ip�r+1 ;and (a; q)k = k�1Ym=0(1� aqm); (24)is the q-analogue of the Pohhammer symbol. Instanes of suh polynomials are theAskey{Wilson polynomials, the q-Raah polynomials and big q-Jaobi polynomialsamong others [17, 24℄.3 The orthonormal funtions on nonuniform lattiesIn this setion we will introdue a set of orthonormal funtions whih are orthogonalwith respet to the unit weight [6, 27℄'n(s) =p�(s)=d2nPn(x(s))q; (25)e.g. for the ase of disrete orthogonality we haveb�1Xsi=a'n(si)'m(si)�x(si � 12) = Ænm:Next, we will establish several important properties of suh funtions whih gener-alize, to the nonuniform latties, the ones given in [18℄. In the following we will use thenotation �(s) = �(s) + �(s)�x(s� 12).First of all, inserting (25) into (1), (17), (20), (21) we obtain that they satisfy thefollowing di�erene equation:p�(s)�(s+ 1) 1�x(s)'n(s+ 1) +p�(s� 1))�(s) 1rx(s)'n(s� 1)�� �(s)�x(s) + �(s)rx(s)�'n(s) + �n�x(s� 12 )'n(s) = 0; (26)the three term reurrene relation:�ndn+1dn 'n+1(s) + ndn�1dn 'n�1(s) + (�n � x(s))'n(s) = 0; (27)6



the raising-type formula:L+(s; n)'n(s) = �n �2n[2n℄q dn+1dn 'n+1(s); (28)and the lowering-type formula:L�(s; n)'n(s) = n �2n[2n℄q dn�1dn 'n�1(s); (29)where the raising-type operator L+(s; n) and the lowering-type operator L�(s; n) aregiven by L+(s; n) � � �n[n℄q �n(s)� 0n � �(s)rx(s)� I+p�(s� 1)�(s) 1rx(s)E�; (30)and L�(s; n) � �� �n[n℄q �n(s)� 0n + �n�x(s� 12) + �2n[2n℄q (x(s)� �n)� �(s)�x(s)� I+p�(s)�(s+ 1) 1�x(s)E+; (31)respetively. In the above formulas E�f(s) = f(s� 1), E+f(s) = f(s+1) and I is theidentity operator.Notie that the last two formulas have a remarkable property of giving all thesolutions 'n(s). In fat, from (31) setting n = 0 and taking into aount that '�1(s) �0 we an obtain '0(s). Then, substituting the obtained funtion in (30), we an �ndall the funtions '1(s),. . . , 'n(s),. . . .Proposition 3.1 The raising and lowering operators (30) and (31) are mutually ad-joint.Proof: The proof is straightforward. In fat using the boundary ondition and aftersome alulations we obtain, in the ase of disrete orthogonality, the expressionb�1Xsi=a'n+1(si) � [2n℄q�2n L+(si; n)'n(si)��x(si � 12 )= b�1Xsi=a � [2n+ 2℄q�2n+2 L�(si; n+ 1)'n+1(si)�'n(si)�x(si � 12) = �ndn+1dn :The other ases an be done in an analogous way.Proposition 3.2 The operator orresponding to the eigenvalue �n in (26) is self ad-joint.Proof: Again we will prove the result in the ase of disrete orthogonality. Using theorthogonality onditions �(a)�(a) = �(b)�(b) = 0 (whih is a onsequene of (13)), wean write b�1Xsi=a'n(si)p�(si � 1)�(si) 1rx(si)'l(si � 1)�x(si � 12)= b�2Xs0i=a�1'n(s0i + 1)q�(s0i)�(s0i + 1) 1rx(s0i + 1)'l(s0i)�x(s0i + 12)7



= b�1Xsi=a'n(si + 1)p�(si)�(si + 1) 1rx(si + 1)'l(si)�x(si + 12)+'n(a)p�(a� 1)�(a) 1rx(a)'l(a� 1)�x(a� 12)�'n(b)p�(b� 1)�(b) 1rx(b)'l(b� 1)�x(b � 12 );where in the last two sums we �rst take the operations � and r, and then substitutethe orresponding value: e.g. �x(a) = x(a+ 1)� x(a).Now, we use the fat that 'n(s) = p�(s)=d2nPn(x(s))q, as well as the boundaryonditions �(a)�(a) = �(b)�(b) = 0, sop�(a� 1)�(a)'n(a)'l(a� 1) =p�(b� 1)�(b)'n(b)'l(b� 1) = 0:The other terms an be transformed in a similar way. All these yield the expressionb�1Xsi=a'l(si)�p�(si)�(si + 1) 1�x(si)'n(si + 1)�x(si + 12)+p�(si � 1)�(si) 1rx(si)'n(si � 1)�x(si � 12)� == b�1Xsi=a'n(si)�p�(si)�(si + 1) 1�x(si)'l(si + 1)�x(si + 12)+p�(si � 1)�(si) 1rx(si)'l(si � 1)�x(si � 12)� ;from where the proposition easily follows.4 Fatorization of di�erene equation of hypergeometritype on the nonuniform lattieWe will de�ne from (26) the following operatorH(s; n) �p�(s� 1)�(s) 1rx(s)E� +p�(s)�(s+ 1) 1�x(s)E+�� �(s)�x(s) + �(s)rx(s) � �n�x(s� 12)� I:Clearly, the orthonormal funtions satisfyH(s; n)'n(s) = 0:Let us rewrite the raising and lowering operators in the following wayL+(s; n) = u(s; n)I +p�(s� 1)�(s) 1rx(s)E�;L�(s; n) = v(s; n)I +p�(s)�(s+ 1) 1�x(s)E+;8



where, as before, �(s) = �(s) + �(s)�x(s� 12), andu(s; n) = �n[n℄q �n(s)� 0n � �(s)rx(s) ;v(s; n) = � �n[n℄q �n(s)� 0n + �n�x(s� 12 ) + �2n[2n℄q (x(s)� �n)� �(s)�x(s) :Proposition 4.1 The funtions u(s; n) and v(s; n) satisfy u(s+1; n) = v(s; n+1), or,equivalently u(s+ 1; n� 1) = v(s; n).The proof of the above proposition is straightforward but umbersome. We will inludeit in appendix A. If we now alulateL�(s; n+ 1)L+(s; n) = v(s; n+ 1)u(s; n) + �(s)�(s+ 1)� 1�x(s)�2++u(s+ 1; n)�p�(s� 1)�(s) 1rx(s)E� +p�(s)�(s+ 1) 1�x(s)E+� ;and substitute the values for u(s; n), v(s; n) and H(s; n) we getL�(s; n+ 1)L+(s; n) = h�(n)I + u(s+ 1; n)H(s; n);where the funtionh�(n) = � �n[n℄q �n(s+ 1)� 0n � �(s+ 1)rx(s+ 1)�� �n[n℄q �n(s)� 0n � �n�x(s� 12 )�+�n[n℄q �n(s+ 1)� 0n �(s)�x(s) ;is independent of s. In fat, applying the last equality to the orthonormal funtion'n(s) and taking into aount (28) and (29),h�(n) = �2n[2n℄q �2n+2[2n+ 2℄q�nn+1:Similarly, L+(s; n� 1)L�(s; n) = h�(n)I + u(s; n� 1)H(s; n);where h�(n) = �� �n[n℄q �n(s� 1)� 0n + �2n[2n℄q (x(s� 1)� �n) + �n�x(s� 32)� ��� �n[n℄q �n(s)� 0n + �2n[2n℄q (x(s)� �n) + �(s)rx(s)���� �n[n℄q �n(s)� 0n + �2n[2n℄q (x(s)� �n)�� �(s� 1)�x(s� 1)� ;is independent of s. Furthermore, applying the last expression to the funtions 'n(s),and taking into aount (28) and (29), we obtainh�(n) = �2n�2[2n� 2℄q �2n[2n℄q�n�1n:Remark: Notie that h�(n+ 1) = h�(n).All the above results lead us to our main theorem:9



Theorem 4.1 The operator H(s; n), orresponding to the hypergeometri di�ereneequation for orthonormal funtions 'n(s), admits the following fatorization {usuallyalled the Infeld-Hull-type fatorization{u(s+ 1; n)H(s; n) = L�(s; n+ 1)L+(s; n)� h�(n)I; (32)and u(s; n)H(s; n+ 1) = L+(s; n)L�(s; n+ 1)� h�(n)I; (33)respetively.Remark: Substituting in the above formulas the expression x(s) = s we obtain theorresponding results for the uniform lattie ases (Hahn, Kravhuk, Meixner and Char-lier), onsidered before by several authors, see e.g. [6, 18, 27℄ and by taking appropriatelimits (see e.g. [17, 23℄), we an reover the lassial ontinuous ase (Jaobi, Laguerreand Hermite).5 Appliations to some q-normalized ortogonal funtionsFor the sake of ompleteness we will apply the above results to several families oforthogonal q-polynomials and their orresponding orthonormal q-funtions that are ofinterest and appear in several branhes of mathematial physis. They are the Al-Salam & Carlitz polynomials I and II, the big q-Jaobi polynomials, the dual q-Hahnpolynomials, the ontinuous q-Hermite and the elebrated q-Askey{Wilson polynomials.The main data for these polynomials are taken from the nie survey [17℄ exept thease of dual q-Hahn polynomials [3℄. Nevertheless, they an be obtained also from thegeneral formulas given in Setion 2.Finally, let us point out that similar fatorization formulas were obtained by otherauthors, e.g. Miller in [21℄ onsidered the polynomials on the linear exponential lattieand Bangerezako studied the Askey{Wilson ase. Our main aim in this setion is toshow how our general formulas lead, in a very easy way, to the needed fatorizationformulas of several families for normalized funtions {not polynomials{.5.1 The Al-Salam & Carlitz funtions I and IIThe Al-Salam & Carlitz polynomials I (and II) appear in ertain models of q-harmoniosillator , see e.g. [5, 8, 9, 22℄. They are polynomials on the exponential lattiex(s) = qs � x, de�ned [17℄ byU (a)n (x; q) = (�a)nq�n2 � 2�1 q�n; x�1 q; qxa0 ! ;and onstitute an orthogonal family with the orthogonality relation (15)Z 1a U (a)n (x; q)U (a)m (x; q)!(x)dqx = d2nÆnm;where!(x) = (qx; a�1qx; q)1; and d2n = (�a)n(1� q)(q; q)n(q; a; a�1q; q)1q�n2 �:As usual, (a1; � � � ; ap; q)n = (a1; q)n � � � (ap; q)n, and (a; q)1 =Q1k=0(1� aqk).10



They satisfy a di�erene equation of the form (1) where�(x) = (x� 1)(x � a); �(x) = e�(x) = � 0x+ �(0); being � 0 = q1=21� q ; �(0) = q1=2 1 + aq � 1 :The eigenvalues �n and the oeÆients of the TTRR are given by�n = [n℄q q1�n=2q � 1 and �n = 1; �n = (1 + a)qn; n = aqn�1(qn � 1);respetively. In this ase we havee�00 = 1; e�0(0) = �a+ 12 ; e�(0) = a; � 0n = q 12�n1� q ; �n(0) = q 1�n2 a+ 1q � 1 :The orresponding normalized funtions (25) are'n(x) =vuut (qx; a�1qx; q)1(�a)nq�n2 �(1� q)(q; q)n(q; a; q=a; q)1 2'1 q�n; x�1 q; qxa0 ! :De�ning now the Hamiltonian for these funtions 'n(x)H(x; n)=pa(x�1)(x�a)x(1� q�1) E�+ pa(qx�1)(qx�a)x(q � 1) E++�q1�n1�q x+ q(a+1)q � 1 � [2℄qkq x�1� I;and using that u(x; n) = aq1� qx�1, v(x; n) = u(qx; n� 1) = a1� qx�1, thusL+(x; n) = u(x; n)I + qpa(x� 1)(x� a)x(q � 1) E�; where E�f(x) = f(q�1x);and L�(x; n) = v(x; n)I + pa(qx� 1)(qx� a)x(q � 1) E+; where E+f(x) = f(qx);we have L�(x; n+ 1)L+(x; n) = aq1�n(qn+1 � 1)(q � 1)2 I + v(x; n+ 1)H(x; n);and L+(x; n� 1)L�(x; n) = aq2�n(qn � 1)(q � 1)2 I + u(x; n� 1)H(x; n);whih give the fatorization formulas for the Al-Salam & Carlitz funtions I. If we nowtaking into aount that (see [17, p. 115℄)V (a)n (x; q) = U (a)n (x; q�1);then, the fatorization for the Al-Salam & Carlitz funtions II'n(s) = q� s2�vuut as+n(aq; q)1q�n+12 �(q; aq; q)s(1� q)(q; q)n 2�0 q�n; x q; qna� ! ;follows from the fatorization for the Al-Salam & Carlitz funtions I simply by hangingq to q�1. 11



5.2 The big q-Jaobi funtionsNow we will onsider the most general family of q-polynomials on the exponentiallattie, the so-alled big q-Jaobi polynomials, that appear in the representation theoryof the quantum algebras [31℄. They were introdued by Hahn in 1949 and are de�ned[17℄ byPn(x; a; b; ; q) = (aq; q)n(q; q)n(abqn+1; q)n 3�2 q�n; abqn+1; x q; qaq; q ! ; x(s) = qs � x:They onstitute an orthogonal family, i.e.,Z aqq !(x)Pn(x; a; b; ; q)Pn(x; a; b; ; q)dqx = d2nÆnmwhere !(x) = (a�1x; q)1(�1x; q)1(x; q)1(b�1x; q)1 ;d2n = aq(1� q)(q; =a; aq=; abq2; q)1(aq; bq; q; abq=; q)1 (1� abq)(q; bq; abq=; q)n(�a)�nq��n2 �(abq; abqn+1; abqn+1)n :They satisfy the di�erene equation (1) with�(x) = q�1(x� aq)(x� q) and �(x) = e�(x) = � 0x+ �(0);where � 0 = 1� abq2(1� q)q1=2 and �(0) = q1=2 a(bq � 1) + (aq � 1)1� q ;and �n = �q�n=2[n℄q 1� abqn+11� q :They satisfy a TTRR, whose oeÆients are�n = 1; �n = 1�An � Cn; n = CnAn�1;where An = (1� aqn+1)(1 � qn+1)(1� abqn+1)(1� abq2n+1)(1� abq2n+2) ;Cn = �aqn+1 (1� qn)(1� bqn)(1� ab�1qn)(1� abq2n)(1� abq2n+1) :Also, we havee�00 = 1 + abq2q ; e�0(0) = �abq + aq + a+ 2 ; e�(0) = aq;� 0n = q�n � abqn+2q1=2(1� q) ; �n(0) = q 1�n2 a(bq1+n � 1) + (aq1+n � 1)1� q :The normalized big q-Jaobi funtions are de�ned by'n(s) =s (x=a; x=; q)1(aq; bq; abq=; q)1(abq; aq; aq; q; q; q)n(�a)n(x; bx=; =a; aq=; abq2 ; q)1(1� q)aq(1 � abq)(q; bq; abq=; q)n�3�2 q�n; abqn+1; x q; qaq; q ! :12



The orresponding Hamiltonian isH(x; n) = pa(x�q)(x�aq)(x�q)(bx�q)x(q�1) E�+qpa(x�1)(x�a)(x�)(bx�)x(q�1) E++�1 + abq2n+1qn(1� q) x� q(a+ ab+ + a)1� q + aq(q + 1)1� q x�1� I:Furthermore,u(x; n) = abqn+11� q x+Dn � aq2q � 1x�1 and v(x; n) = abqn+11� q x+Dn�1 � aqq � 1x�1;where Dn = ab(ab+ a+ a+ )q2n+3 � a(b+ + ab+ b)qn+2(1� abq2n+2)(1 � q) ;thusL+(x; n) = u(x; n)I+pa(x�q)(x�aq)(x�q)(bx�q)x(q � 1) E�; where E�f(x) = f(q�1x);andL�(x; n) = v(x; n)I + qpa(x�1)(x�a)(x�)(bx�)x(q � 1) E+; where E+f(x) = f(qx);so L�(x; n+ 1)L+(x; n) = Æn+1n+1I + v(x; n+ 1)H(x; n);L+(x; n� 1)L�(x; n) = ÆnnI + u(x; n� 1)H(x; n);where Æn = (1� abq2n�1)(1� abq2n+1)q2n�1(q � 1)2 :The above formulas are the fatorization formulas for the family of the big q-Jaobinormalized funtions.Sine all disrete q-polynomials on the exponential lattie x(s) = 1qs + 3 |theso alled, q-Hahn lass| an be obtained from the big q-Jaobi polynomials by aertain limit proess (see e.g. [2, 17℄, then from the above formulas we an obtainthe fatorization formulas for the all other ases in the q-Hahn tableau. Of speialinterest are the q-Hahn polynomials and the big q-Laguerre polynomials, whih arepartiular ases of the big q-Jaobi polynomials when  = q�N�1, N = 1; 2; : : :, and = 0, respetively.5.3 The q-dual-Hahn funtionsIn this setion we will deal with the q-dual-Hahn polynomials, introdued in [3, 24℄and losely related with the Clebsh-Gordon oeÆients of the q-algebras SUq(2) andSUq(1; 1) [3℄. They are de�ned on the lattie x(s) = [s℄q[s+ 1℄q byW n(x(s); a; b)q = (�1)n(qa�b+1; q)n(qa++1; q)nqn=2(3a�b++1+n)knq (q; q)n 3�2 q�n; qa�s; qa+s+1 q; qqa�b+1; qa++1 ! ;13



and satisfy a disrete orthogonality (14) with respet to the weight funtion�(s) = q 12 ((b�1)2�(2s�1)(a+))(1� q)2(a+�b)+1 (qs�a+1; qs�+1; qs+b+1; qb�s; q)1(q; q; qs+a+1; qs++1; q)1 ;where �12 � a < b� 1; jj < a+ 1; and for this weight funtion the norm isd2n = q 14 (�4ab�4b+6a+6�8b+6+4n(a+�2b)�n2+17n+2b2)(1� q)2(a+�b+1)+3n (qb��n; qb�a�n; q)1[n℄q!(q; qa++n+1; q)1 :These polynomials satisfy a TTRR (17) with�n=1;�n=q 12 (2n�b++1)[b�a�n+1℄q[a++n+1℄q+q 12 (2n+2a+�b+1) [n℄q[b��n℄q+[a℄q[a+1℄q;n=q2n++a�b[a+ + n℄q[b� a� n℄q[b� � n℄q[n℄q;and the seond order di�erene equation (1), whose eigenvalues are �n = [n℄qq 12�n2 and�(s) = q 12 (s++a�b+2)[s� a℄q[s+ b℄q[s� ℄q and �(x) = e�(x) = � 0x+ �(0);with � 0 = �1 and �(0) = q 12 (a�b++1)[a+ 1℄q[b� � 1℄q + q 12 (�b+1)[b℄q[℄q:Also we will need the valuese�00 = kq; e�0(0) = 12kq (2[2℄q � q 12�b � q 12+a � q 32+a+�b � q 12+);e�(0)= 12k3q (2q1+a�b+q�1 +q+2q1+�b+ 2q1+a+�(1+q)(q�b+qa+q+q1+a+�b));� 0n=�q�n; �n(0)=q 12 (�b�n+1)[+ n2 ℄q[b� n2 ℄q+q 12 (a+�b+1�n2 )[a+ n2+1℄q[b��n�1℄q;In this ase, the Hamiltonian, assoiated with the q-dual Hahn normalized funtionsp�(s)=d2nW n(x(s); a; b)q , isH(s; n) = q 12 (+a�b+2)q([s+ 1℄2q � [a℄2q)([b℄2q � [s+ 1℄2q)([s+ 1℄2q � [℄2q)[2s+ 2℄q E++q 12 (+a�b+2)q([s℄2q � [a℄2q)([b℄2q � [s℄2q)([s℄2q � [℄2q)[2s℄q E� � q 12�n2 [n℄q[2s+ 1℄qI+q 12 (+a�b+2)� [s� a℄q[s+ b℄q + [s� ℄q[2s℄q � [s+ 1� a℄q[s+ 1 + b℄q[s+ 1� ℄q[2s+ 2℄q � I;where E+f(s) = f(s+ 1) and E�f(s) = f(s� 1). Then, using thatu(s; n) = q 12�n2 x(s+ n=2)� q 12+n2 (q 12 (�b�n+1)[+ n2 ℄q[b� n2 ℄q+q 12 (a+�b+1�n2 )[a+ n2 + 1℄q[b� � n� 1℄q)� q 12 (s++a�b+2) [s� a℄q[s+ b℄q[s� ℄q[2s℄q ;and taking into aount that v(s; n) = u(s+ 1; n� 1), we �ndL+(s; n) = u(s; n)I + q 12 (+a�b+2)q([s℄2q � [a℄2q)([b℄2q � [s℄2q)([s℄2q � [℄2q)[2s℄q E�;14



andL�(s; n) = v(s; n)I + q 12 (+a�b+2)q([s+ 1℄2q � [a℄2q)([b℄2q � [s+ 1℄2q)([s+ 1℄2q � [℄2q)[2s+ 2℄q E+:Thus L�(s; n+ 1)L+(s; n) = q�2nn+1I + v(s; n+ 1)H(s; n);and L+(s; n� 1)L�(s; n) = q�2n+2nI + u(s; n� 1)H(s; n);are the fatorization formulas for the q-dual Hahn normalized funtions.5.4 The Askey{Wilson funtionsFinally we will onsider the family of Askey{Wilson polynomials. They are polynomialson the lattie x(s) = 12(qs + q�s) � x, de�ned by [17℄pn(x(s); a; b; ; d) = (ab; q)n(a; q)n(ad; q)nan 4�3 q�n; qn�1abd; ae�i�; aei� q; qab; a; ad ! ;i.e., they orrespond to the general ase (23) when qs1 = a, qs2 = b, qs3 = , qs4 = d.Their orthogonality relation is of the formZ 1�1 !(x)pn(x; a; b; ; d)pm(x; a; b; ; d)p1� x2�qdx = Ænmd2n; qs = ei�; x = os �;where!(x) = h(x; 1)h(x;�1)h(x; q 12 )h(x;�q 12 )2��q(1� x2)h(x; a)h(x; b)h(x; )h(x; d) ; h(x; �) = 1Yk=0[1� 2�xqk + �2q2k℄;and the norm is given byd2n = (abdqn�1; q)n(abdq2n; q)1(qn+1; abqn; aqn; adqn; bqn; bdqn; dqn; q)1 :The Askey{Wilson polynomials satisfy the di�erene equation (1) with�(s) = �q�2s+1=2�2q(qs � a)(qs � b)(qs � )(qs � d); �q = (q 12 � q� 12 )and �(x) = e�(x) = � 0x+ �(0), where� 0 = 4(q � 1)(1 � abd); �(0) = 2(1 � q)(a+ b+ + d� ab� abd� ad� bd):Furthermore, they satisfy the TTRR (17) with oeÆients�n = 1; �n = a+ a�1 � (An + Cn)2 ; n = CnAn�14 ;where An, Cn are de�ned byAn = (1� abqn)(1� aqn)(1� adqn)(1 � abdqn�1)a(1� abdq2n�1)(1� abdq2n) ;Cn = a(1� qn)(1 � bqn�1)(1� bdqn�1)(1� dqn�1)(1� abdq2n�2)(1 � abdq2n�1) ;15



and whose eigenvalues are �n = 4q�n+1(1� qn)(1 � abdqn�1). In addition, we havee�00 = �4(q � 1)2(1 + abd)q�1=2;e�0(0) = (q � 1)2(a+ b+ + d+ ab+ abd+ ad+ bd)q�1=2;e�(0) = (q � 1)2(1� ab� a� ad� b� bd� d+ abd)q�1=2;� 0n = 4q�n(q � 1)(1 � abdq2n);�n(0) = 2(q � 1)(�a� b� � d+ (ab+ abd+ ad+ bd)qn)q�n=2:De�ning now the normalized funtions (see (15)) p!(x)=d2npn(x; a; b; ; d), the orre-sponding Hamiltonian H(s; n) isH(s; n) = 2q3=2[2s� 1℄qG(s; a; b; ; d)E� + 2q3=2[2s+ 1℄qG(s+ 1; a; b; ; d)E+ +2 q�2s+1=2Q4i=1(1� qsi+s)[2s+ 1℄q + q�2s+1=2Q4i=1(qs � qsi)[2s� 1℄q +q�n+1�2q(1� qn)(1� abdqn�1)[2s℄q!Iwhere G(s; a; b; ; d) =vuut 4Yi=1(1� 2qsiq�1=2x(s� 1=2) + q�1q2si);We now de�neu(s; n) = Dnxn(s) +DnEn + q�2s+1=2 (qs � a)(qs � b)(qs � )(qs � d)[2s� 1℄qwhere Dn = �4q�n=2+1=2(q � 1)(1 � abdqn�1):En = (�a� b� � d+ (ab+ abd+ ad+ bd)qn)qn=22(1 � abdq2n) :Taking into aount that v(s; n) = u(s+ 1; n� 1), we �ndL+(s; n) = u(s; n)I + 2q3=2[2s� 1℄qG(s; a; b; ; d)E� ;L�(s; n) = v(s; n)I + 2q3=2[2s+ 1℄qG(s+ 1; a; b; ; d)E+ ;where E�f(s) = f(s� 1) and E+f(s) = f(s+ 1). Thus,L�(s; n+ 1)L+(s; n) = D2nD2n+2n+1I + v(s; n+ 1)H(s; n);and L+(s; n� 1)L�(s; n) = D2n�2D2nnI + u(s; n� 1)H(s; n);whih is the fatorization formula for the Askey{Wilson funtions.16



To onlude this paper let us onsider the speial ase of Askey{Wilson polynomialswhen a = b =  = d = 0, i.e., the ontinuous q-Hermite polynomialsHn(xjq) = 2�nein�2�0 q�n; 0 q; qne�2i�| ! ; x = os �:These polynomials are losely related with the q-harmoni osilator model introduedby Biedenharn [13℄ and Mafarlane [19℄, as it was pointed out in [9℄, where the fator-ization for the ontinuous q-Hermite polynomials were onsidered �rst. If we substitutea = b =  = d = 0 in the above formulas, we obtain the fatorization for the q-Hermitefuntions 'n(x) =sh(x; 1)h(x;�1)h(x; q1=2)h(x;�q1=2)(qn+1; q)12��q(1� x2) Hn(xjq):In fat, sine for ontinuous q-Hermite polynomials�(s) = ��2qq2s+1=2; �(s) = 4(q � 1)x(s); �n = 4q�n+1(1� qn);and the oeÆients for the three-term reurrene relation are �n = 1, �n = 0, n =(1� qn)=4, then we obtainH(s; n) = 2q3=2[2s� 1℄qE�+ 2q3=2[2s+ 1℄qE++2 q�2s+1=2[2s+ 1℄q+ q2s+1=2[2s� 1℄q�q�n+1�2q(1�qn)[2s℄q!I;L+(s; n) =  �4q�n=2+1=2(q � 1)x(s+ n=2) + q2s+1=2[2s� 1℄q! I + 2q3=2[2s� 1℄qE�;L�(s; n) =  �4q�n=2+1(q � 1)x(s+ n=2 + 1=2) + q2s+5=2[2s+ 1℄q! I + 2q3=2[2s+ 1℄qE�and h�(n) = 4�2qq�2n+1(1� qn).AknowledgementsThe authors thank N. Atakishiyev and Yu. F. Smirnov for interesting disussions andremarks that allowed us to improve this paper substantially, as well as the referees fortheir remarks. The work has been partially supported by the Ministerio de Cienias yTenolog��a of Spain under the grant BFM-2000-0206-C04-02, the Junta de Andalu��aunder grant FQM-262 and the European proyet INTAS-2000-272.Appendix AHere, for the sake of ompleteness, we will prove Proposition 4.1, by showing that u(s+1; n)�v(s; n+ 1) = 0. To do that, we start with omputing the di�ereneu(s+ 1; n)� v(s; n+ 1) = �n[n℄q �n(s+ 1)� 0n � ��(s)�x(s)+�n+1[n+ 1℄q �n+1(s)� 0n+1 � �n+1�x�s� 12�� �2n+2[2n+ 2℄q (x(s) � �n+1) + �(s)�x�s� 12��x(s) :17



Now we use the expansion �n(s+ 1) = � 0nxn(s+ 1) + �n(0). Sine�(x2(s))�x(s) = x2(s+ 1)� x2(s)x(s + 1)� x(s) = x(s+ 1) + x(s) = C1qs(q + 1) + C2q�s(q�1 + 1) + 2C3 =(C1qs+ 12 + C2q�s� 12 )[2℄q + 2C3 = [2℄qx1(s) + (2� [2℄q)C3;x(s)�x(s � 12) = x(s)(C1qs� 12 (q � 1) + C2q�s+ 12 (q�1 � 1)) = x(s)(C1qs � C2q�s)kq =(C21q2s � C22q�2s)kq + C3(C1qs � C2q�s)kq ;where kq = q 12 � q� 12 ,��x(s)�x(s)�x(s � 12 )� =  (C21q2s+1 + C22q�2s�1)[2℄q + C3(C1qs+ 12 + C2q�s� 12 )C1qs+ 12 � C2q�s� 12 ! kq ;and ��x(s)��x(s� 12)� = ��x(s)�(C1qs � C2q�s)kq� = C1qs+ 12 + C2q�s� 12C1qs+ 12 � C2q�s� 12 kq :Then ��(s)�x(s) = ��x(s) �e�(s)� 12e� (s)�x(s � 12 )� == ��x(s) �e�002 x2(s) + e�0(0)x(s) + e�(0)� 12 (� 0x(s) + �(0))�x(s� 12 )� =e�002 ([2℄qx1(s) + (2� [2℄q)C3) + e�0(0)� 12�(0) C1qs+ 12 + C2q�s� 12C1qs+ 12 � C2q�s� 12 ! kq�12� 0 [2℄q(C21q2s+1 + C22q�2s�1) + C3(C1qs+ 12 + C2q�s� 12 )C1qs+ 12 � C2q�s� 12 ! kq :This yields for u(s+ 1; n)� v(s; n+ 1) the expression= � �n[n℄q xn(s+ 1) + �n[n℄q �n(0)� 0n �� �e�002 [2℄qx1(s) + C32 (2� [2℄q)e�00 + e�0(0)�e� 02 � [2℄q(C21q2s+1 + C22q�2s�1)C1qs+ 12 � C2q�s� 12 + C3x1(s)� C23C1qs+ 12 � C2q�s� 12 � kq��(0)2 � x1(s)� C3C1qs+ 12 � C2q�s� 12 � kq�+ �n+1[n+ 1℄q �n+1(s)� 0n+1 � �n+1�x�s� 12���2n+2[2n+ 2℄q �C1qs + C2q�s + C3 � [n+ 1℄q�n(0)� 0n +[n+ 2℄q�n+1(0)� 0n+1 � C3(1 + [n+ 1℄q � [n+ 2℄q)�+ �(s)�x�s� 12��x(s) :Next, we expand �xn(s) and e�002 [2℄x1(s), make some straightforward alulations and use theidentities:�n[n℄q �n(0)� 0n + [n+ 1℄q �2n+2[2n+ 2℄q �n(0)� 0n = � �n[n℄q + [n+ 1℄q �2n+2[2n+ 2℄q� �n(0)� 0n = �[n+ 2℄q�n(0);�n+1[n+ 1℄q �n+1(s)� 0n+1 � [n+ 2℄q �2n+2[2n+ 2℄q �n+1(0)� 0n+1 = [n+ 1℄q�n+1(0) + �n+1[n+ 1℄q xn+1(s);18
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