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Abstract

The hypergeometric polynomials in a continous or a discrete variable, whose canonical
forms are the so-called classical orthogonal polynomial systems, are objects which naturally
appear in a broad range of physical and mathematical fields from quantum mechanics, the
theory of vibrating strings and the theory of group representations to numerical analysis and
the theory of Sturm-Liouville differential and difference equations. Often, they are encoun-
tered in the form of a three term recurrence relation (TTRR) which connects a polynomial
of a given order with the polynomial of the contiguous orders. This relation can be directly
found, in particular, by use of Lanczos-type methods, tight-binding models or the appli-
cation of the conventional discretisation procedures to a given differential operator. Here
the distribution of zeros and its asymptotic limit, characterized by means of its moments
around the origin, are found for the continuous classical (Hermite, Laguerre, Jacobi, Bessel)
polynomials and for the discrete classical (Charlier, Meixner, Kravchuk, Hahn) polynomials
by means of a general procedure which (i) only requires the three-term recurrence relation
and (ii) avoids the often high-brow subleties of the potential theoretic considerations used
in some recent approaches. The moments are given in an explicit manner which, at times,
allows us to recognize the analytical form of the corresponding distribution.

1 Introduction.

The hypergeometric polynomials in a continous [10, 39] or a discrete [40, 39] variable are ob-
jects not only interesting per se and because of its abundant applications in many areas of mathe-
matics ranging from angular momentum algebra and probability theory to numerical analysis and
the theory of Sturm-Liouville differential and difference equations, the theory of random matrices
and the study of speech signals, but also because they help us to interpret and characterize nu-
merous natural phenomena encountered, e.g. in the quantum mechanical description of physical
and chemical systems, the theory of vibrating strings and the study of random walks with dis-
crete time processes, as pointed out by several authors [10, 2, 3, 4, 7, 18, 19, 35, 40, 39, 42, 43, 44].
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The global behaviour of the zeros of the discrete and continuous classical orthogonal poly-
nomials in both finite and asymptotic cases has received a great deal of attention from the
early times [22, 27, 45] of approximation theory up to now [8, 9, 20, 23, 24, 31, 32, 33, 34, 36,
37, 41, 42, 46, 47, 48, 50]. Indeed, numerous interesting results have been found from the dif-
ferent characterizations (explicit expression, weight function, recurrence relation, second order
difference or differential equation) of the polynomial. See [16] for a survey of the published
results up to 1977; more recent discoveries are collected in [49] and [31] for continuos and dis-
crete polynomials, respectively. Still now, however, there are open problems which are very
relevant by their own and because of its numerous applications to a great variety of classical
systems [29, 35] as well as quantum-mechanical systems whose wavefunctions are governed by
orthogonal polynomials in a “discrete” [2, 3, 40, 43, 44] or a “continuous” variable [5, 18, 19, 39].

In this paper the attention will be addressed to the problem of determination of the moments
of the distribution density of zeros for a classical orthogonal polynomial of a given order n in
both discrete and continuous cases as well as its asymptotic values (i.e, when n — oo), which
fully characterize the limiting distribution of zeros of those polynomials, in an explicit and exact
manner. At times, the analytical form of the distribution associated to the calculated moments
is recognized. This problem is solved for a general system of polynomials, defined by the recur-
rence relation given by (2.1) and (2.2) below, which includes all classical orthogonal families in
the discrete (Hahn, Meixner, Kravchuk, Charlier) and continuous (Hermite, Laguerre, Jacobi,
Bessel) cases.

We have used a method [12, 16, 17] which is based only on the three-term recurrence relation
satisfied by the involved polynomials. This method, which will be described in Section 2, is of
general vality since no peculiar constraints are imposed upon the coefficients of the recurrence
relation. It was found in a context of tridiagonal matrices [6, 13, 14, 15] and it has been already
used for the study of the distribution of zeros of g-polynomials [1, 11, 16]. Some of the results
found here have been previously obtained by other means and are dispersely published, what will
be mentioned in the appropiate place; they are included here for completeness, for illustrating
the goodness of our procedure or because they are not accessible for the general reader [16].

Then, in Section 3, expresions for the moments of the discrete distribution of zeros of any
discrete and continuous classical polynomials of arbitrary, but fixed, degree n are given in a
closed and compact form; the explicit values for the first few moments of lowest order are also
shown. Finally, in Section 4, the limiting distribution of zeros of all classical polynomials is
described by means of its moments and, at times, its analytical form is shown.

2  Density of zeros of a general polynomial system from its
recurrence relation. Basic tools

We will consider here a general system of polynomials {P,}>2, defined by the following
three-term recurrence relation

Po(z) = (z — an) Ppi1(z) — b1 Po—2(7)
(2.1)
P_1($) = 0, Pg(x) = 1, n > 1

where the coefficients a,, and b2 ;| are rational functions in n defined by
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The parameters defining a,, and b2 are supposed to be real. In the case when the e; and f;
are such that b2 > 0 for n > 1, then, Favard’s theorem [10] assures the orthogonality of the
polynomials {P,}52, and we will say that the relation (2.1) defines a sequence of orthogonal
polynomials.

Here we will collect the tools which allow us to find the moments of the distribution of zeros
(Theorem 1), and its asymptotic values (Theorem 2), of the polynomials which obey a three-term
recurrence relation of the form (2.1). These results, previously found in a context of tridiagonal
matrices [12, 16, 17], constitute an alternative method to compute the properties of the spectral
moments of the orthogonal polynomials directly from the three-term recurrence coefficients
(@n,by). They are used to obtain the distribution of zeros of the discrete and continuous classical
orthogonal polynomials for both finite and asymptotic cases in Section 3 and 4, respectively.

Theorem 1 The spectral moments(Dehesa [12, 16])
Let {Py, k=0,1,...,n,...}, be a system of polynomials defined by the recurrence relation (2.1),
which is characterized by the sequences of numbers {a,} and {b,}. Let the quantities

1 b
po=1, ) == ["ampu()ds, m=1,2 (2.3)
a

be the normalized-to-unity spectral moments of the polynomial P,, i.e., the moments around the
origin of the discrete density of zeros py, defined by

Z — Tpy), (2.4)

{Tns, i =1,2,...,n} being the zeros of that polynomial. It is fulfilled that

SI'—‘

1 ! 2ry T 2r 2r; T’
— +1 _
= ZF(H,H, N ]+1 Z a; 1b Ya b b e m=1,2,..,n. (2.5)

Or, in a compact form,

1 n—s | J+1 J
=EZF(7°'1,T1,...,TJ-,7°;-+1 Z HaH_k " H k1) | m=1,2,...,n, (2.6)
(m) i=1 | k=

where s denotes the number of non-vanishing r; which are involved in each partition of m. The
first summation runs over all partitions (r},r1, ...,r;-_H) of the number m such that

(3] 5=
1. R+ 2R = m, where R and R' denote the sums R = Zri and R' = Z rh, or
i=1 =1
[F]-1 (3]
rh+2) r=m. (2.7)
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2. Ifr; =0, 1 <i<[Z], then ry, =1, =0 for each k > i and
3. (2] =12 or [2] = 2=L for m even or odd, respectively.
The factorial coefficient F' is defined by

/ / / "o
F(r1sm1, 7y ey Ty 15 Tp—1,Tp) =

(ri +m —1)! pl:[l (rio1+ri+m =) (rp-1+r, —1)! (2.8)

i lry! (ricy — Dryle! (rp—1— 1)!ry)! ’

=2
with the convention ro = r, = 1. For the evaluation of these coefficients, we must take into
account the following convention

! ! ! ! ! !
F(ry,m1,7m9,72..,751,0,0) = F(ry, 71,79, 72...,7)_1).

This theorem was initially found in a context of Jacobi matrices [12, 16]. A straightforward
calculation gives

1 1 n n—1
ph=— Zai], u’g=—[2a?+2zbfl,
Le—=1 =1 =1
1 [ n n—1
wy = Y oai+3% bai+ ai+1)l : (2.9)
Li=1 i=1

1 [ n n—1 1 n—2
Hy =~ > af +4> b (af + aait1 +al + 5b?) +4> 07|,
Li=1 =1 i=1

for the the first four spectral moments.

Recently, it has been shown [25, 26, 34] that the moments given by Eq. (2.6) may be repre-
sented as the so-called Lucas polynomials of the first kind in several variables, each depending
on the recurrence coefficients (a,,by,) in a certain manner.

Theorem 2 The asymptotic values for the moments (Dehesa [16, 17])

Let {Py, k=0,1,...,n,...} be a system of polynomials defined by the recurrence relation (2.1),
which is characterized by the sequences of numbers {an} and {b,}. Let p, p* and p** the asymp-
totic zero distribution functions of the polynomial P, defined as follows

p@) = lim pu(s), p*(z) = lim po (n—) ,

n—00 n—00 %(a*’Y)
(2.10)
Sk k _ 1' x
P (x) = lim pn | G ) -
Here, py, is given by Eq. (2.4), and the moments of the functions p, p*, and p** are
/(n) Ml(n)
[ I(n) no_ ; m mo_ m 2.11
Hm nhﬁr{olo Fm ™ P nhﬁr{olo n%(a_’)’) o Hm nlLI{:O nm(0—8)" ( )

Then, according to the different behaviour of the asymptotic zero distribution, the polynomial
system { P }32, may be subdivided in the seven following classes
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1. Class 8 < B and o < 7. The polynomials belonging to this class has a spectrum of zeros
characterized by the quantities

2. Class 0 < B and o = ~y. The polynomials in this class are such that

y _<eo>m<2m>
2m — \ ’
fo m m=0,1,2, ..

!/ _
Kom+1 = 0,

3. Class 0 < B and a > ~y. The polynomials in this class are such that

. 1 <eg>m<2m>
2m — /N 4 1 \ £ )
m(er—7) +1 \fo m m=0,1,2,..

n _
Kom+1 = 0,

4. Class 0 = B and a < y. The polynomials in this class are such that

[y = (—Co>m =0,1,2
m dO ’ [t R

5. Class 0 = B and o = 7. The polynomials in this class are such that

[3]

p m—21 i .
! Co €o 24 m
= E — — : X =0,1,2,...

6. Class 0 > 3 and a <. The polynomials in this class are such that

1 Cp m
m—__ — (2 =0,1,2,...
/J’m m(e_ﬁ)"‘]_ <d0> 7 m 07 ? 2

7. Class 0 > 8 and o > y. Here three cases may be distinguised:

(a) Case 8 — B> L(a— ). The polynomials in this subclass are such that (see case 6)

1 Cp m
m______ - = =0,1,2,...
/J’m m(e_ﬁ) +1 <d0> 7 m 07 ? 2

(b) Case 8 — 3= 3(a— ). The polynomials in this subclass are such that

Sf

]

(¢) Case 8 — 3 < 3(av—=). The polynomials in this subclass are such that (see case 3)

o 1 <eg>m<2m>
2m — 7 N | 1 \ 7 )
m(er =)+ 1 \fo m m=0,1,2, ..

" _
Wom41 = 0,
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3 The spectral moments of the classical polynomials.

3.1 Classical discrete polynomials.

Let us compute the moments around the origin of the distribution of zeros of a polynomial of
a given degree, which belong to one of the four classical families (Charlier, Meixner, Kravchuk
and Hahn) of orthogonal polynomials in a discrete variable. They are given in terms of the
parameters which characterize the three-term recurrence relation of the corresponding family.
Alternative expressions for these quantities may be obtained from the explicit expressions of the
polynomial [49].

3.1.1 Charlier Polynomials.

The Charlier polynomials ¢ (z) satisfy a three-term recurrence relation (2.1) with the coeffi-
cients [40]
an=n-+pu—1, b2 =np. (3.1)

Then, Theorem 1 leads to the expression

n 1 n_sjtl . r! / . r
) = E%F(ri,n,n.,m,rﬁl);kﬂl[wk—uu} TG+ k=D
m =1 k= -

for the spectral moments of the polynomial c#(x). The first four moments are

(n) _ n+2p—1 ,u/(n):(n_l)(2n_1)+2(n—l)u+,u2,

n —1)? 9(n—1)u2
ug)Zglzlﬁ+3M—&fu+—@7rﬂL+uﬂ
2 _ _
pm 03 @ =3 =1 3o 1) (60— T R 4 8 (1 — 1) i+ i

30

3.1.2 Meixner Polynomials.

The Meixner polynomials m)#(z) are defined by the three-term recurrence relation (2.1) with
coefficients [40]
—1)(1 -1
0, =" )(+u%Hw7l%:nMn +7) (3.2)
L—p (1 —p)?

Application of Theorem 1 gives the value

"ij“ [(z‘+k—2)(1+u)+u7 N

1
/J’,TE’LTL) = - ZF(Tllvrla"'arjalr;'+1) 1
" (m) —H

i=1 k=1

T+ k—Dpli+k—2+7)7"
<11 TEE |

for the m-th order spectral moment of the Meixner polynomial of n-th degree. A simple calcu-
lation gives

) _ 1+p—2yp—n(l+p)
H 2(i—1) !
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'u/(n)_ (1—=3n+2n2+p2 (1+6 (y—1)y—3n+6yn+2n?)+2u (n—1) (6y+4n—2>5))
2 - 2 9
6(n—1)

uy' = s (ll_u)g[(zfu%zw(lw) (=1 + (1 +p)’ (n=1)n) (n=T1+p @y+n—1)+

+2u (n—1) (6925 +3 (1+p) (n—2) (n—1)+’y(4n—5+u(8n—13)))],

for the three spectral moments of lowest order.

3.1.3 Kravchuk Polynomials.

The Kravchuk polynomials ky(z,p, N) satisfy a three-term recurrence relation of the type
(2.1) with coefficients [40]

an = Np+ (1 —=2p)(n—1), b2 =np(1—p)(N —n+1). (3:3)
In this case, Theorem 1 leads to

n—s j+1

1
:EZF(TIDTM JTjT 9+1 ZH [Np + 1—2p)(2+k—2)]k><
i=1 k=1

(3.4)
J
x [T 1G+k—=1)p(1 —p)(N —i—k+2)]"™
k=1
for the m-th order spectral moment of the n-th degree Kravchuk polynomial. From this general
expression, it is straightforward to find the values

/(n)__l l_ )
pr = 2+n<2 p)+p+ Np,
n —1)(@2n—1
M;():(n )én )
i((n—1)2n+12(n—1)2(N—n—|—1)p—6(n—1)(N—n—|—1)(5n—3(N+2))p2—
—4(N—n+1)(6+n(5n—11)+ 5N —5nN + N?) p*),

+2(n—1)(N—=n+1)p+(N—-n+1)(N—2n+2)p*

n? (10 +3n (=54 2n)) — 1] +4(n — 1)> (N —n + 1) p+
+2(n—=1)(N—=n+1)(n (6N —9n +22) +7(2+ N)) p*—
—4(n—1)(N—-n+1)(Tn?+2(2+N) 3+ N) —2n(9+4N)) p°+

+(N—=n+1)(14n® = 2+ N)B+ N)(4+ N)+n(3+ N) (204 9N) —n? (50 + 21N)) p*

for the four moments of lowest order of the distribution of zeros of the polynomials k, (z,p, N).
3.1.4 Hahn Polynomials.

The Hahn polynomials h%#(x, N) satisfy a three-term recurrence relation of the form (2.1)
with coefficients [40]

S B+1D)(N—1(a+8)+(n—1)2N +a——-2)(a+ B +n)
" (a+pB+2n)(a+ B+2n—2) ’

n(N —n)(a+p+n)(a+n)(B+n)(a+ 5+ N +n)

2 _
b = (a+B+2n—1)(a+p+2n)(a+B+2n+1)

n
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They constitute a finite family of orthogonal polynomials, defined for the degrees n < N (N is
the number of points in the discrete set). Applying Theorem 1, one obtains

n—s

1
:EZF(Tllvrlv"'vijT;‘—l—l)ZX
(m) i=1
Xjﬂ B+1)(N=1)(a+B8)+(i+k—2)2N+a-B-3)a+B+i+k—1)]"*
Pt (a+B+2i+2k—4)(a+ B+ 2+ 2k—2)
ﬁ [z+k—1 Nei—k+D(a+8+i+k—Da+i+k—1)B+i+k—1)a+B+N+i+tk—-1)]"
Pt (a+B+2i+2k+1)(a+B+2i+2k—2)2(a+ B+ 2i+ 2k —3)

for the m-th order spectral moment of the Hahn polynomial of degree n. This general expression
for m = 1,2 reduces to

(n) _ —a+n(=2+2N+a—p)+(-1+2N)p
= 2(2n+ a+ ) ’

i(n) _ 1
b T S (1t 2ntatf) @ntatp)]

—2n5 4+ n*(4 —6a —683) — 2n®(—4 4+ a —3N(3N + 3 —4a) — 113+ 3(N + 3a)3)+

+a+B)(e®+(1+6(N—-1)N)(B—-1)8+a28—12N —18))+

+2n2(=2 4+ (9 + (o — 4)a) + 38 — a(—10 + 3a)8 — (3o — 8) 3>+

+8% +6N2(a+36—1) +6N(1 —3a+a? +2(a—2)3 — 52)+

+n(=3a® —48+3a2(3+4N(B—1) + B) +36(6(1 — N)N + B+
+2N(4N —5)3+ (1 —=2N)B?%) —a(4+6(N — 1)N +6(2 + 3(N — 3)N)SB+

133+ 2N)52))]

A very important special subclass of the Hahn polynomials is when @ = 3 = 0; it is the
Chebyshev system of discrete polynomials ¢, (z, N). In this case the recurrence coefficients (2.2)

become a,, = ;1 and b2 = %, and the spectral moments have the simpler expression
1 nos it Tk z+k—1) N2 — i+ k-1 "
= LS R i) S { } 1I . ,
n = ~ L o] [4(20 + 2k — 1)2 — 1]
and
iy N -1 iy 202 —n?+n(BN -2 —6(N —1)N —2
/"l’l - 2 ) /"1’2 - 24n _ 12 )
iy (N—=1)((2—n)n*+ (2—4n) N + (5n — 4) N?)
Hs = = 16n—8 ’
1
pm = 24 — 112n + 280n% — 414n® + 2060 + 52n° — 60n°+

240( n—1)2(2n —3)
+9n7 — 360n2N + 1140n> N — 960n* N + 240n° N — 360N?2 + 1470nN2—
—1590n2N2 — 90n3 N2 4+ 630n* N2 — 150n° N2 + 720N — 2820n N3 + 3360n2N3—

—1200n3 N3 — 360N* + 1350nN* — 1530n2N* + 525n>N*| |
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form=1,2,3,4.

For convenience let us also consider the rescaled polynomials

T, (z,N) = <¥>ntn <N2_1(:c+1),N>, (3.6)

which form an orthogonal system with respect to the discrete set of the points

k—1

{xk——1+2N_1

- 0,1,2,...} Cl-1,1].

They satisfy a recurrence relation of the form (2.1) with coefficients

2(N? — n?)
n — b2 = o ( . .
=00 = N T - 1) (37)
Then, the moments of its distribution of zeros are given by
2 & — L z+k—1) [N2 (i+k—1)2] ’“’f
- F(O,Tl,O,TQ,...,O,’I“ ) y m = 2k
0o , m=2k—1

so that the firts few non-vanishing moments are given by

iy (n—1)(BN?2 —n? +n—1)
27 3@n-1)(N-1)2

1(n) 1

By = 2
15(2n—-3)(2n—1)" (N —1)

+90N2 — 360nN2 + 510n2N2 — 360n3N2 + 150n* N2 — 30n° N2 — 45N* + 150nN* — 150n2N* — 21

< [45n3N4 +98n — 200n” + 276n® — 274n* + 172n° — 60n° + In"+

3.2 Classical continuous polynomials.

Let us now consider the classical orthogonal polynomials in the a continuous variable: Hermite,
Laguerre, Jacobi and Bessel. Here we compute the spectral moments of a polynomial of a given
degree belonging to one of these classical continuous families. Let us mention that the first
few moments of lowest order were previously obtained by use of a general highly-non-linear
recurrence relationship generated from the second-order differential equation satisfied by the
polynomials under consideration [8, 9, 23]. As well, they can be also found by means of the
explicit expression of the polynomials [34, 49].

3.2.1 Hermite Polynomials.

The Hermite polynomials H, (x) are defined by the three-term recurrence relation (2.1) with
coefficients [39]

a, =0, b= g (3.8)



10 ZERO DISTRIBUTIONS OF POLYNOMIALS FROM THEIR RECURRENCE RELATION

Theorem 1 allows us to find

n—p p _1 Tl
Z ZForl,om, 0, | S {Hk ] . m =2k
u;(l”) —{ "3 i=1 k=1 ,
0o , m=2k—1

for the m-th order spectral moment of the Hermite polynomial of degree n. Then, it is straight-
forward to obtain the values
/() )y _m—1 i i) _ (n—1) (2n —3)

Ml = 07 MZ = 9 ) M?, = 07 M4 - 4 ’

5n3 —20n2 +32n — 15
< )

ps =0, pe=

for the six moments of lowest order.

3.2.2 Laguerre Polynomials.

The Laguerre polynomials L% (z) satisfy a three-term recurrence relation of the form (2.1)
with coefficients [39]

ni1 =2n4+a—1, b2 =n(n+a). (3.9)
Theorem 1 gives
, 1 n—sj+1
,u,%n)=EZF(r'1,r1, STy T )T 26+ k-2) +a+1]"% x
(m) i=1 k=1

x [[lG+k=-1)G+k—14+a)]™,
k=1

for the m-th order spectral moment of the Laguerre polynomial of degree n. This general
expression supplies the values

B =nta, VY =mt+a)2n+a-1),

ug(n):(n-l—a) (5n2+n(5a—6)+a2—3a+2),
uil(n) =(n+a) (14n3+n2(21a—29)+n(a—2) (9a —11) + (¢ — 3) (. — 2) (a—l)).

for the four moments of lowest order.

3.2.3 Jacobi Polynomials.

The Jacobi polynomials P®?(z) satisfy a three-term recurrence relation of the form (2.1) with
coefficients [39]

BQ—O[Q
T Gntat+p)n—2+a+p)’
(3.10)
b2 dn(n+ a)(n + B)(n+a+ B)

" 2nta+B-D2n+a+B)22n+a+B+1)
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Theorem 1 allows us to find

—sj+1 2 2
_t ! . p -«
- n%F(Tl’ﬁ"”’”’Tﬂ'“ g 1;[ Ri+k—2) +ta+B2li+tk—1)+a+tp

ﬁ[ Ai+k—-1)(i+k—14a)i+k—14+P)(i+k—14+a+p) }"k
a2+ E =) +a+ P20 +k-1)+a+B-1]20+k-1)+a+B+1]] ~

for the m-th order spectral moment of the Jacobi polynomial of degree n. Then the following
values for the three moments of lowest order inmediately follow

n)y B«

H C2nta+p’
my _ An? +4n? (a+ B -1 +2n((a-2)a+ (-2)0) + (a+8) (& + (8 -1) - a(1+20))
Hz = 2n—1+a+p8)2n+a+8)’

?

1
(—2+2n+a—|—,8)(2n+a+ﬁ—1)(2n+a—|—,8)3x
x{(a—,@) (16n* +4n* (a+ B —2) (4a+ 43 — 1) + 4n® (Ta + 73 — 6) +

H3 = —

+(@+8)? 2+ (@-3)a—38-2a8+8%) +2n(a+p) (4+a(2a—9)—9[3+2a[3+2[32))}

In the special case of Legendre polynomials (i.e., when o = = 0) we have

9 k
ﬁ Z (ZF(O,Tl,O,’f’Q,...,Tp))
p=1 \(m)

0o , m=2k—1
for the m-th order spectral moment of the n-th degree polynomial, and

1(n) () n—1 1(n) )y (n—1)(3n? —Tn +3)
= 0, ey s = 0, = 5
a fo T 18 ! (2n—1)2(2n—3)
15 +37n — 74n? —162n> + 170 n* + 160n° — 1808 +40n”
(=5+2n) (=34+2n) (=14+2n)*(1 +2n)* '

for the six moments of lowest order.

ps =0, pe=

3.2.4 Bessel polynomials.

The Bessel polynomials BY(x) satisfy a three-term recurrence relation of the form (2.1) with
coefficients [28]
2 9 dn(n + a)

an:_(2n+a)(2n+a_2)a bn:_(2n+oz-l-1)(2n+a)2(2n+a—1) (3]_1)

Then, Theorem 1 allows us to find the values

1
n—sj+ 9%

| , "
:E%F(Tl’”"' SERS ZH{ 20+ k—2) + a2 (z+k—2)+a]] X

i=1 k=1

] 4 +Ek-1)(i+k—-1+a)

xkl:[l[ 200 + &k —1) + ][(“rk—1)+a—1][2(i+k—1)+a+1]} ,
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for the m-th order spectral moment of the Bessel polynomial of degree n. Then the following
values for the three moments of lowest order inmediately follow

) _ __ 2 (n) _ 4(n + )
Mo o 12 C 2n4+a—-1)2n+a)?’
1(n) —8a(n + )

B3 = nta-1D)2nt+a—2)2n+a)3

4 The asymptotic values of the spectral moments of the classical
polynomials.

Here we will compute the asymptotic values of the moments of the distribution of the zeros of
the classical polynomials by means of the general Theorem 2. For specific cases there exist other
procedures which provide these asymptotic moments such as, e.g. the Nevai-Dehesa theorem
[36] or any of its generalizations [47]. Recently, general potential theoretic considerations [42, 47]
are being succesfully used [20, 31, 32, 33, 41] to determine the asymptotic distribution of the
discrete and continuous classical orthogonal polynomials. Contrary to these approaches, the
method used in our work does not use the orthogonality condition of the involved polynomials.
This is an observation especially relevant when comparing our Kravchuk and Hahn results with
the corresponding values based on potential theoretic techniques.

4.1 Classical discrete polynomials.
4.1.1 Charlier Polynomials.

The Charlier polynomials satisfy a three-term recurrence relation of type (2.1) with coefficients
given by (3.1). Notice that these coefficients are of the form (2.2) with the parameters 6 = 1,
B =0, a=1and vy =0, as well as (¢g,e9) = (1,1). Then, Theorem 2 shows that, since
0> %(a—*y), the Charlier polynomials belong to the class 7a, so that its asymptotical distribution
of zeros p**(z) = lim, 00 p (&) has the moments

1
"o m=0,1,2, .. (4.1)

m m+17

This indicates that the contracted density of zeros of Charlier polynomials with large degree is
uniform [30, Vol 2, p. 276],

p<f>=1, 0<Z<, (4.2)
n

which is in agreement with the Nevai-Dehesa result [36] and the recent work of Kuijlaars—Van
Assche [32].

4.1.2 Meixner Polynomials.

The coefficients (ay,b,) of the three-term recurrence relation of the Meixner polynomials
m)*(z) are shown in (3.2). They have the form (2.2) with parameters # =1, § =0, a = 2
and v = 0. Then, these polynomials belong to the class 7b as described in Theorem 2. So, its
asymptotical distribution of zeros p**(z) = lim,_, p (£) has the moments

(3] —9 i .
1 (L4 pw)™ = u [ 26 m
"= ) . =0,1,2,... 4.3
:um m+1i:0 (1_M)m 7 2’L 9 m y Ly Hy ( )




ZERO DISTRIBUTIONS OF POLYNOMIALS FROM THEIR RECURRENCE RELATION 13

where we have taken into account that (co,dp) = (1+p,1— ) and (eg, fo) = (i, (1 — p)?). This
result has been previously obtained by other means [36] and coincide with the recent Kuijlaars
& Van Assche’s work [32].

4.1.3 Kravchuk Polynomials.

Here we will determine the asymptotic distribution of zeros of the Kravchuk polynomials
{kn(z,p,N); n > 1} in the following two cases (i) for n — oo and N fixed, and (ii) for
(n, N) — oo, but so that n/N =t € (0,1). This will be done by calculating all the moments of
the associated asymptotic density of zeros in an explicit and closed form which depends on p in
the first case and on (p,t) in the second one.

The first case when n — oo and N is fixed, is particularly important because then the
polynomials are not orthogonal since the order n may be greater than N. Indeed, it is well
known that the discrete orthogonality is preserved only for finite sequences, with n < N [10, 40].
The recursion coefficients (ay,, by,) of the polynomials &, (x, p, N), have in this case the form (2.2)
with parameters # = 1, =0, a = 2 and v = 0, and (cg,ep) = (1 — 2p,p(p — 1)), Theorem
2 shows that the Kravchuk polynomials k,(x,p, N), N fixed, belong to the class 7b. So, its
asymptotical distribution of zeros p**(z) = limy, o p () has the moments

(5]

pl = % (1= 2p)™ % [p(p — 1))’ ( 2 ) ( o ) , m=0,1,2,.. (4.4)

7
m + =0

This result have not been found by those approaches where the orthogonality condition plays
a crucial role [20, 21, 31, 32, 33].

In the second case, i.e., when the degree n of the polynomial and the number N of points of
growth of its orthogonality measure approach to infinity so that n/N =t € (0, 1), it is interesting
to better consider the rescaled monic polynomials N "k, (Nz,p, N) which have the recurrence
coefficients

.« On (1-2p)(n—1) *Z_b%_ <n>< n 1)

Then, according to theorem 1, the discrete density of zeros of the rescaled Kravchuk polynomials
has the moments

1 nos j+1 1-2p)(i+k—2)]"
M*I(”) = EZF(’/‘;,Tl,---,Tj,r9+1) Z H p+ ( p)(N ):| 8

(4.6)

Xf[ [p(l—p)(i+k—1)(N—7l—k+2)y’“’

2
k=1 N

*I(n)

Then, the first few moments u, = lim 1 , of the asymptotic density of zeros of the

n—o00,n/N—t



14 ZERO DISTRIBUTIONS OF POLYNOMIALS FROM THEIR RECURRENCE RELATION

rescaled Kravchuk polynomials are

t
p=p+5—-prt,

t2
pr==2p (~141) 1+ 5 +p° (1-3t+212),

3 3p%t (3—8t+5¢t2
u3:—3p(—1+t)t2+z+ P ( 9 i )

+pP (1—6t+10t2 —5t3) ,

t4
pa=—Ap (<140 8 + = +6p” ¢ (2-5t+32) —4p*t (—2+10t - 1522 +7¢%) +

+p? (1 — 10t + 302 — 3543 + 14t4) :

!(n)

which coincide with the corresponding values of pu,, = lim ™ where u%(ln) are given in
n—soo,n/N—t N™

(3.4). Moreover, they are consistent with the corresponding distribution of zeros recently found

[21] on a potential theoretic basis.

In the special case, p =t = %, from (4.6) by some straightforward calculations we obtain

that p, = , which corresponds to an uniform density of distribution of zeros; and this is

1
m+1
in agreement with the recent results of Dragnev & Saff [20] and Kuijlaars & Rakhmanov [31]
which use some technics extracted from potential theory.

4.1.4 Hahn Polynomials.

As in the previous case, we should consider two different cases (i) for n — oo and N fixed,
and (ii) for (n, N) — oo, but so that n/N =t € (0, 1).

In the first case, i.e., n — oo and N fixed, since the Hahn polynomials h%?(z, N) form a
finite system of orthogonal polynomials defined for the degrees n < N (N is the number of
points in the discrete set [40]), we will study the asymptotic distribution of zeros of the Hahn
polynomials which are not orthogonal like the the first N members of the sequence. In this case,
using the fact that these polynomials obey a three-term recurrence relation with coefficients
(an, by) behaving as (see (3.5))

(2N +a— B —2)n2+0(n) ,  —n®+0(nd)
4n? 4+ O(n) T 160t + O(n3)’

ayp —

it is easy to check that the Hahn polynomials h2*(z, N), N fixed, belong to the class 7c of Theo-
rem 2. So, the moments of its corresponding asymptotical density of zeros p* () = lim, o0 p (£)

are given by
1 -1\ [ 2m
n
[ i — <_> ( ) )
2m + 1\ 16 m m=0,1,2, .. (4.7)

N’gm-i-l =0,
since (eq, fo) = (—=1,16). Notice that these moments (i) do not depend on the parameters o and

8 which characterize the polynomial A2?(z, N), and (ii) do not correspond to the asymptotic
distribution of zeros of the orthogonal Hahn polynomials h%#(z, N) (n < N) which we discuss
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in the following.

Now, let us consider the second case. Since the asymptotic density of the contracted zeros
of any family of this class (Hahn class) does not depend on a and 3, we shall consider here for
simplicity the study of the asymptotic distribution of the afore mentioned Chebyshev family.
Precisely, we will calculate the moments of the asymptotic density of zeros of the rescaled
Chebyshev polynomials T;,(z, N) defined by (3.6) along the rays n/N =t € (0,1) ((n, N) — 00).
In this case, the recurrence coefficients behave according to (3.7) as

o () [1- 3]

BN GRS

an =0,

so that the first few asymptotic moments are

o 1 ¢ _0 3 t2+3t4 o
pH1 =Y, /-1‘2_2 67 Hn3 =Y, /-1‘4_8 4 407 pH5 =Y,

5 52 3¢ 5¢b

M=16 " 16 " 16 112
A simple calculation shows that the above moments correspond to the ones given by the
asymptotic density of zero distribution p for the Chebyshev polynomials T}, (z, N)

1
— arctan

t
——] z€[-nr1]
mt <\/ r? — x2>
p(z) = F=VIo 2,
1
2
obtained by Rakhmanov in [41, Eq. (1.3) page 114] (see also [31]) by potential theoretic consid-
erations.

|z[ € [r, 1],

4.2 Classical continuous polynomials.

Finally, for completeness, we include here the asymptotic values of the spectral moments of the
classical continuous orthogonal polynomials as briefly calculated with our method. These values
and the associated asymptotic distribution of zeros were previously obtained in the literature
[16, 24, 38, 36, 46, 47, 48] by other means.

4.2.1 Hermite Polynomials.

The coefficients of the three-term recurrence relation of these polynomials, which are given
by Eq. (3.8), have the form (2.2) with the parameters § = =0, @ = 1 and v = 0, as well as
(eo, fo) = (%, 1). Then, Hermite polynomials belong to both classes 3 and 7c of Theorem 2; so
that, its asymptotical distribution of zeros p**(z) = lim, 0 p (£) has the moments

., 1 <1>2m<2m>
Hom = — | —= ,
m+1\v2 m m=0,1,2,..., (4.8)

H’ngrl = 07
which describe a special case of Beta distribution [30, Vol. 2, p. 210]: the semicircular density
distribution. Therefore, the contracted density of zeros of Hermite polynomials is
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as already found in the literature by other means [7, 16, 36, 24, 47].

4.2.2 Laguerre Polynomials.

For this case, the recurrence coefficients given by (3.9) are of the form (2.2) with parameters
0 =1, 08=0 a=2and v =0, as well as (co,dy) = (2,1) and (eg, fo) = (1,1). Then,
the Laguerre polynomials L% (z) belong to the class 7b described in Theorem 2; so that, its
asymptotical distribution of zeros has the moments

(5] )
1 (24 m 1 2m
mo_ __ - om=—2i ) = — =0,1,2,... 4.10
Hm m+1i:0 (Z>(2'L> m+1<m>7 m 3 Ly Ly reny ( )

which characterize another special case of Beta distribution [30, Vol. 2, p. 210]. This result has
been previously obtained in the literature [16, 36]. This indicates that the contracted density of
zeros of the Laguerre polynomials with large degree n is given by

1

()-2() (D) rsien
n 2T \n n n

Similar analytical expressions, which coincide with this one for very large values of n, have been
derived in the WKB framework [50], by use of random matrix methods [7] and also in [24].

4.2.3 Jacobi Polynomials.

From (3.10) one notices that the recurrence coefficients of these polinomials behave as
B —a? 9 4n* 4+ O(n?)
C4nt 4+ 0(n)’ " 160t + O(nd)

These expressions are of the form (2.2) with parameters § =0, 8 = 2 and o = v = 4, as well
as (eq, fo) = (4,16). Then, Jacobi polynomials belong to class 2 as decribed in Theorem 2; so
that, the moments of the asymptotic density of zeros are

. <1>2m ( 2m >
2m — \ o )
2 m m=0,1,2, .. (4.11)

!/ _
Kom+1 = 0,

This corresponds to the so-called arc-sin density [22]

plzr) = ——— -1<z<1. (4.12)

4.2.4 Bessel polynomials.

From (3.11) one notices that the recurrence coefficients of these polinomials behave as
2 9 4n? + O(n)
p = ——————— =——
" 4n* +0O(n)” " 16n* 4+ O(n?)
These expressions are of the form (2.2) with parameters 6 =0, 3 =2, @« = 2 and v = 4. Then,
Bessel polynomials belong to class 1 as decribed in Theorem 2; so that, the moments of the
asymptotic density of zeros are

I
{ 59 _:16 m=1,2,.. (4.13)
m )

which correspond to a delta-Dirac density [23].
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