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Abstract

Starting from the second-order difference hypergeometric equation satisfied by the
set of discrete orthogonal polynomials {p,}, we find the analytical expressions of
the expansion coefficients of any polynomial r,,(z) and of the product r,,(z)g;(z)
in series of the set {p,}. These coefficients are given in terms of the polynomial
coefficients of the second-order difference equations satisfied by the involved discrete
hypergeometric polynomials. Here ¢;(z) denotes an arbitrary discrete hypergeometric
polynomial of degree j. The particular cases in which {r,,} corresponds to the non-
orthogonal families {z™}, the rising factorials or Pochhammer polynomials {(z),}
and the falling factorial or Stirling polynomials {m[m]} are considered in detail. The
connection problem between discrete hypergeometric polynomials, which here corre-
sponds to the product case with m = 0, is also studied and its complete solution for all
the classical discrete orthogonal hypergeometric (CDOH) polynomials is given. Also,
the inversion problems of CDOH polynomials associated to the three aforementioned
non-orthogonal families are solved.
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1 Introduction.

The hypergeometric polynomials of a discrete variable are objects which not only are
important per se in the framework of the theory of special functions but also they play a
very relevant role in numerous physical and mathematical fields which range from quantum
mechanics, theory of group representations and probability theory to numerical analysis,
the theory of vibrating strings, the study of random walks with discrete time processes
and the theory of Sturm-Liouville difference equations as pointed out by numerous au-
thors [7, 21] and particularly the excellent monograph of A.F. Nikiforov, S.K. Suslov and
V.B. Uvarov [41]. This is the case not only for the so-called classical discrete orthogonal
polynomials (Hahn, Meixner, Kravchuk and Charlier) but also for discrete orthogonal sets
other than the classical ones; see e.g. [12, 24, 39, 49].

The expansion of any arbitrary discrete polynomial r,,(z) in series of a general (albeit
fixed) set of discrete hypergeometric polynomial {p,(z)} is a matter of great interest, not
yet solved save for some particular classical cases, as briefly summarized by Askey [8] and
Gasper [17, 18] up to the middle of seventies and by Ronveaux et al [45, 48], since then
up to now. This is particulary true for the deeper problem of linearization of a product
of any two discrete polynomials. Usually, the determination of the expansion coefficients
in these particular cases required a deep knowledge of special functions and, at times,
ingenious induction arguments based in the three-term recurrence relation of the involved
orthogonal polynomials [13, 17, 18, 26, 51, 52]. Only recently, general and widely appli-
cable strategies begin to appear [25, 30, 37, 47].

Markett [37] for symmetric orthogonal polynomials, has designed a method which be-
gins with the three-term recurrence relation of the involved orthogonal polynomial system
to set up a partial difference equation for the (orthogonal) polynomial, in case of connec-
tion problems, or for the product of two (orthogonal) polynomials, in case of linearization
problems, to be expanded; then, this equation has to be solved in terms of the initial data.

Ronveaux et al. [47, 48] for classical and semiclassical orthogonal polynomials and
Lewanowicz [30, 34] for classical orthogonal polynomials have proposed alternative, sim-
pler techniques of the same type although they require the knowledge of not only the
recurrence relation but also the differential-difference relation or/and the second-order
difference equation, respectively, satisfied by the polynomials of the orthogonal set of the
expansion problem in consideration. See also [5, 11, 23, 31, 45, 46] for further description
and applications of this method in the discrete case, and [19, 32] in the continuous case
as well as [3, 33] for the ¢g-discrete orthogonality. Koepf and Schmersau [25] has proposed
a computer-algebra-based method which, starting from the second order difference hyper-
geometric equation, produces by symbolic means and in a recurrent way the expansion
coefficients of the classical discrete orthogonal hypergeometric polynomials (CDOHP) in
terms of the falling factorial polynomials (already obtained analytically by Lesky [28]; see
also [41], [42]) as well as the expansion coefficients of its corresponding inverse problem.
The combination of these two simple expansion problems allows these authors to solve
the connection problems within each specific CDOHP set.

All these four methods provide the expansion coefficients via recursion relationships,
what is very useful for the symbolic and/or numerical computation of its values. However,
in general, these relationships cannot be analytically solved; so that, in practice, closed



expressions for the expansion coefficients are only obtained, at times, by symbolic means.

The purpose of this paper is to describe a general and constructive approach to solve
the expansion formulas of the type

’I“m(:l?) = Zcmnpn(x)a (11)
n=0

and _
m+)

m(x)Qj(x) = Z ijnpn(x)’ (1.2)
n=0

where r,(z) and gj(x) are any mth-degree and jth-degree discrete hypergeometric poly-
nomials, and {p,} denotes an arbitrary set of discrete orthogonal hypergeometric poly-
nomials. Expansions of type (1.1) are usually called as connection or projection formulas
while those of type (1.2) are referred to generalized linearization formulas or modified ex-
pansions of Clebsch-Gordan type [43]. Here the name Clebsch-Gordan is attached because
its structure is similar to the Clebsch-Gordan series for spherical functions [15]. Usually
the Clebsch-Gordan expansion [15] or linearization relation involves polynomials which
belongs to the same system (i.e., they are all three Hahn polynomials, or all Meixner,
etc). When this is not the case, we referred to modified Clebsch-Gordan expansion or
generalized linearization [43]. For the sake of completeness and notation, let us also men-
tion that expansions (1.1) are called as inversion formulas when the polynomials 7, (x)
belongs to any of the following non-orthogonal families: the power polynomials {z"}, the
rising factorials or Pochhammer polynomials {(z),,} and the falling factorials or Stirling
polynomials {z[™}.

The only prerequisite of our approach is the knowledge of the second order difference
equation satisfied by the involved hypergeometric polynomials. The resulting expansion
coefficients are given in a compact, analytic, closed and formally simple form in terms of
the polynomial coefficients of the corresponding second-order difference equation(s). Then,
contrary to Market’s, Ronveaux et al’s and Lewanowicz’s methods we do not require infor-
mation about any kind of recurrence relation about the involved discrete hypergeometric
polynomials nor we need to solve any partial difference equation for the polynomial(s)
to be expanded, or “high” order recurrence relation for the connection coefficients them-
selves. Let us also underline that, opposite to Koepf and Schmersau’s method, we do
not use any symbolic means, as well as we directly provide the expansion coefficients in a
single step.

The structure of the paper is the following. Firstly, in Section 2, we collect the basic
background [41] used in the rest of the work; namely, the second-order hypergeometric
difference equation and its polynomial solutions (called as discrete hypergeometric polyno-
mials) as well as the main data of the four classical sets of orthogonal discrete polynomials
(Hahn, Meixner, Kravchuk, and Charlier) in the monic form and the principal properties
of the aforementioned non-orthogonal families {(z),,} and {z[™}. Then, in Section 3,
the coefficients of the expansion (1.1) are given explicitly in terms of the polynomial co-
efficients of the hypergeometric difference equation satisfied by the orthogonal set {p,}.
Also, as a consequence of the resulting expression, the inversion formulas associated to
the Pochhammer, Stirling and the power polynomials are fully solved in the subsection
3.1 and then they are applied to the four classical discrete orthogonal sets.



In Section 4 the coefficients of the linearization formula (1.2) are found in a fully
analytical way in terms of the polynomial coefficients of the second-order difference hy-
pergeometric equations satisfied by the polynomials p,(z) and g;(x). Notice that {g;}
is not necessarily an orthogonal set, neither r,,(z) is obliged to have a hypergeomet-
ric character, what widely extends the linearization formulas considered in the literature
[5, 8,9, 11, 17, 23, 25, 30, 31, 37, 45, 46, 47, 48]. Indeed, most authors study linearizaton
formulas between classical discrete polynomials, usually within the same family (see e.g.
[10, 11, 14, 53] save some of them, who find a few other formulas which either involve
polynomials of diferent classical families [17, 45] or include one of the aforementioned
non-orthogonal families together with polynomials of the same classical system [11]. The
linearization formulas (1.2) corresponding to the special cases in which r,,(z) = (z)m,
zI™ and 2™, are given in subsection 4.1.

In Section 5 the connection problem between discrete hypergeometric polynomials is
worked out in detail as the particular case m = 0 of the linearization formula fully solved
in the previous section. The resulting expressions are used to explicitly obtain the con-
nection formulas between polynomials of each of the four classical families and between
all of its possible pairs. This includes also the Hahn system, what we underline because
no general results of these type can be encountered in the literature.

Finally, some concluding remarks and a number of references are given.

2 “Discrete” preliminaries.

Here we collect the basic background [40, 41] on hypergeometric discrete polynomials
and rising and falling factorials needed in the rest of the work.
2.1 The discrete hypergeometric polynomials.

Let us consider the second-order difference equation of hypergeometric-type [40, 41], i.e.,
the equation

o(x) v Ay(z) +7(z) Ay(r) + dy(z) =0, (2.1)
where o(z) and 7(z) are polynomials of degree not greater than 2 and 1, respectively, and
A is a constant. This equation can be written in the self-adjoint form

Alo(z)p(z) v y(@)] + Ap(x)y(z) =0, (2.2)
where the function p(z) satisfies the Pearson-type difference equation
Alo(@)p(@)] = T(2)p(z) - (2.3)

The solutions of Eq. (2.1) with
1
A=\, =-—nA71(x)— §n(n —1) A% o(z) = —n1’ — in(n —1)0”, (2.4)

are polynomials of degree n, usually called hypergeometric-type “discrete” polynomials
Yy = yYn(z) = pn(z). These polynomials [41] are orthogonal in the interval [a,b — 1] with
respect to the weight function p(z), i.e.,

b—1

Z Pn(Ti)Pm (i) p(wi) = 6nmd72u Tiy1 =z + 1, (2.5)

Ti=a



provided that the following condition
o(z)p(z)zk =0, Vk>0, (2.6)

holds. The square of the norm of the polynomial p,(z) is given [41] by
b—n—1 b—n—1
di = (_1)nAnnB$Z Z pn(xz) = (_1)naan Z pn(Ii)a ) (27)
T;,=a T;=a
where a,, is the leading coefficient of the polynomial p,(z),

Pn(z) = ana” + bpa" 4+, (2.8)

and B, is the normalization constant of the Rodrigues-type formula

Ba_ n T n =
pn(x) = p(I) \V4 [pn( )]7 0,1,2,... ,. (29)
where N
pn(z) = p(z +n) H olx +m). (2.10)

The use of Eq. (2.9) together with the formula

VO] = Y (1) ( ' ) fla =), (211)

allows one to obtain [41] an explicit expression for the polynomials. The symbol ( Z )

denotes the binomial coefficients, i.e.,

n n!
@)ZW

The constants a,, and B,, are related by

n—1

1
an = By, H [7" + §(n+k —1)o"
k=0

,  ag =bo . (2.12)

For the k—difference derivatives of the polynomials p,(z), it is also fulfilled [41] a
Rodrigues-type formula

ApkBn
LFP() = 28t 9 [pa @) (2.13)
where
nl R 1 oM = nl  ay

The most general polynomial solution of the hypergemetric difference equation (2.1)
corresponds to the case

o(z) = Az —z1)(z — z2), o(z)+7(x)=A(r—Z1)(z — Z2).



Without loss of generality we will consider the case A = —1 and 27 = 0. In this case, the
monic polynomial solutions can be written as follows [2, 42]

(_fl)n(_fQ)n ( -n,—%, Ty —T] — Ty +n— 1 ‘ >
P, = F ’ ’ 1 2.15
n(l‘) (172 —Z1 — X2+ n— 1)n 32 -1, —T2 ’ ( )

where the generalized hypergeometric function ,F, is defined by

F < A1, G2y ..., Qp
p-q
bi,ba, ..., by

o0

;[;) — Z (al)k(a2)k R (ap)k ok

—. 2.16
2= (b)) -~ (b)i B (2.16)

The four referred families of discrete hypergeometric polynomials are the so-called
classical discrete orthogonal polynomials: Hahn h%8(z, N), Meixner M) (z), Kravchuk
KP(z,N) and Charlier CF(z), polynomials [40, 41], whose main data in its monic form

are shown in Tables 1-2. They can be expresed in terms of the hypergeometric functions
by formulas [41, Section 2.7,p. 49]:

«, _(1_N)n(ﬁ+]-)n —:l?,a-l-ﬁ-l-n-l-l,—n
, _ u" —n,—T _l
M) = (o F( T M), (2.18)

KP(z, N) = &Pﬁ”g : 2F1< e

1), (2.19)

—n,—T

Ch(z) = (—p)" 2F0< — %) (2.20)

These expressions immediately follow from the above representation (2.15) and its
different limits (more details can be found in [41, 42]).

2.2 The rising and falling factorials.

The rising factorial polynomials or Pochhammer symbols (z), are defined by

r
(:zr)n:x(fb-l-l)---(:z:-l-n—l)z%, (2.21)
and they have the properties
(=)'l (z+ 1) (%)n n+z—1
_ = = itk = , (2.22
as well as the difference equation analogue to the differential equation (z") = nz"~!,
V(T)n =n(T)n-1. (2.23)

The falling factorial polynomials or Stirling polynomials z™ are polynomials defined
by

F(z+1)
x z(z—1)--(z—n+1)=(-1)"(-z), T(z—n+1) (2.24)
They satisfy the equations



Table 1:

Main data for monic Hahn and Charlier polynomials.

Hahn Charlier
Pa() h (a5 N) Ch (z)
(a,b) [0,N —1] [0, 00)
o(z) (N +a—1) x
7(z) (B+1)(N —-1)— (a+B+2)x nw—x

o(z) +7(z) (+B+1)(N-1-2) 1
An nn+a+p+1) n
(=) I'N+a—z)'(B+x+1) e Hu®

r (N —2)T(z + 1) T(z+1)
a,B>-1,n<N-1 uw>0
IN(N+a—-z)(n+B8+z+1) e HhuTtn
pn(@) D(N —n—gz)l(z+ 1) D(z+1)
(71)”‘ _1\n
B (@a+B+n+1)n 0
n (2(6+1)(N—-1)+(n—1)(a—B3+2N —2) n
bn _5( a+pB+2n ) —g@utn=b
2 nT(la+n+DIB+n+ 1) (a+B8+N+n+1) ol
" (a4+pB+2n+1)(N—n—DN(a+B+n+1)(a+8+n+1)2 i

Table 2: Main data for monic Meixner and Kravchuk polynomials.

Meixner Kravchuk
Pr(z) M (x) K7 (x)
(a,b) [0, 00) [0, N]

o(z) T T
(z) (= D)z + py ]\ip__px
o(z) +7(x) nx + yp - @-N)
-p
An (1 —mn =
(z) wT(y + ) Nip®(1 —p)N—=
’ T(y)(z + 1) T(N+1-2)(z+1)
¥>0,0<pu<1 0<p<l,n<N
() pHT(y + @+ n) Np™tr(1 —pN e
o T(y)0(z + 1) T(N+1-n_o)(z+1)
1 n n
B — (-1"(1 )
bn n('wrn;ll:”) (#ﬁl) ~n[Np+ (n - 1)(5 — p)]
2 n!(Y)np™ n!Np"(1 — p)™
" (1 = pyr+an

(N —n)!




It is well known that the polynomials ™ and the z" are closely related one to another
by the formulas

n n
g =3 sBlgk gn =37 Sk (2.26)
k=0 k=0

where si) and S are the Stirling numbers of the first and second kind respectively [1].

Moreover, they satisfy the relations

37(1121 = 35{“71) — nsglk), 87(1121 = kS¥) —I—S,(lk*l) , 1<k<n. (2.27)

n

For the Stirling numbers of the second kind S one has the closed form [1]

1< ki [ B\
7=0

In particular 87(11) = 87(Ln) =1 and 87(Ln_1) = 5(n—1).

3 Expansions of a polynomial r,,(z).

Here we find the explicit expression of the coefficients ¢, in the expansion of an
arbitrary polynomial r,,(z) in series of the orthogonal discrete hypergeometric set {p,},
ie.

Tm(T) = Z CmnPn(T) (3.1)
n=0

The expansion coefficients will be given in terms of the polynomial coefficients o(z) and
7(z) of the difference equation (2.1) satisfied by the polynomials p,(z).

Theorem 3.1 The explicit expression of the coefficients cpyy in the expansion (3.1) is

_1\n b—1 n—1
i = TP S G (@)p(a) T] ol ). (3:2)
n r=a k=0

Proof: Multiplying both sides of Eq. (3.1) by px(z)p(x), and summing between a and
b — 1, the orthogonality relation (2.5) immediately gives

1 b—1
Cmn = —5 Z Tm (2)pn (z)p(z)dr . (3.3)

n r=a

Use the Rodrigues formula (2.9) for p,(z) gives

B b—1
Cmn = d_gn Z rm(7) V" [pn(2)] dz . (3.4)

n r—=a

Using n—times the following formula of summation by parts

b1 b=1 b1
Y f@)vgle) = fle)g(@)] = glz—1)v f(z), (3.5)
T=a a—1 T=a



and taking into account the orthogonality condition (2.6) as well as Egs. (2.6) and (2.23),
one obtains

"B b—1 Zvrm )Pn(z —n)
Cmn= ZV Tm(2)pn (T —n) =

n!an b—n—1 (3:6)

Finally, using the expression of p,(z) as given by (2.10), Eq.(3.6) transforms into the
searched Eq. (3.2). [ |

Keeping in mind Egs. (2.7) and (2.10), one observes that Eq. (3.2) allows us to deter-
mine the expansion formula (3.1) directly from the expression 7, (z) and the polynomial
coefficients which characterize the difference equation verified by the polynomials {py,}.

3.1 Expansion of the polynomials (z),,, 2™ and 2™

Let us to apply the above equations (3.1) and (3.2) to the special cases mp,(z) = (%),
and rp,(z) = 2™, Since

m!

V0 = e @, and Pl = Ty,
then,
T)m = Z AmnPn (1), Amn = %52 Z m—nPn(T —n) , (3.7)
m b—1
=3 dapa(@). o= S @) (o). (38)

To solve the problem
m
= Z emnpn(x)a (39)
n=0

we notice that

k=0 k=0 n=0 =
Then,
€mn = Z dknsy(qf) (3.10)
k=n

The expressions (3.7)-(3.10) complement and extend similar inversion formulas of clas-
sical discrete polynomials previously and differently found by various authors for the Stir-
ling polynomials zI™ in a purely analitical way [17] or recurrently [11, 25, 48, 55]. We
should also mention here that the inversion problems of type (3.7) and (3.8) can be easily
solved in the classical case by use of the hypergeometric-function representation of these
polynomials [53].



3.1.1 Application: Inversion problems of classical polynomials.

Here we will give the explicit closed expressions for the coefficients of the inversion
formulas (3.7) and (3.8) of the classical discrete polynomials associated to the polynomials
() and z[™ respectively. From then and together with Eq. (3.10), the corresponding
inversion formulas associated to the polynomials ™ follow in a straightforward manner.

Charlier Polynomials C/(z).

The use of the inversion formula (3.7) related to (z),, and the main data of the monic
Charlier polynomials (see Table 1), as well as formula (A.6), allows us to find the corre-
sponding expansion coefficients

( 1 m=n=20

,um!lF1<1_2m‘—u> m#0,n=0
m I‘(m)F n—m
n F(n)l 1 n K m # 0,n #0

For the expansion of 2™, we use Eq. (3.8) and Eq. (A.5), to obtain that

Qmn =

\

Meixner polynomials M,)*(z).

Analogously, for the monic Meixner polynomials we find

( 1 m=n=2~0

| _
,wym.QFl 1—m, 14+~ B m#0,n =0
1—p 2 uw—1

Umn = ’

m \ I'(m) n—m, n+vy
(n)F(n)2F1< n

and

10



Kravchuk polynomials KP(z, N).

For the monic Kravchuk polynomials, we obtain

( 1 m=n=2>0

Npm!2F1<1_m’21_N p) m#0,n=0

Amp = )

()i

p) m#0,n #0

and

Hahn polynomials h%%(z, N).
Finally, for the monic Hahn polynomials, one has

( 1 m=n=2~0

3F2< 2.2-N-a 1) m#0,n=0

a+(3+2
Gmn = |
m \ I'(m) n—m,l+n—Nn+8+1
(n)I‘(n) 3F2< n,2n+a+ 3+ 2 ‘1> m#£0,n#0
and

g m (N =m)m—n(n+8+1)mn
meon Cn+a+B+2)mn

Some of the above formulas have been found by different authors using different ap-
proaches. This is so for the Stirling inversion problems of the Charlier [11, 25, 48, 55],
Meixner [25, 48, 55], Kravchuk [25, 48, 55] and Hahn [17] polynomials.

4 Expansion of the product of a polynomial r,(z) and a
hypergeometric polynomial.

Here, we face and solve the modified Clebsch-Gordan linearization problem, which
consists of finding the expansion coefficients c;y,, of the relation

m+7j
'rm($)Qj($) = Z ijnpn(x) ) (4.1)
n=0

where {p,} is a discrete orthogonal set of hypergeometric polynomials which satisfy the
difference equation (2.1) and r,,(z) and g;(z) are arbitrary polynomials.

11



Theorem 4.1 The explicit expression of the coefficients cjmn in the expansion (4.1) is
given by
(=1)" B = "
i = gt Y pul =) " o)y (2] 4.2
r=a

Proof: In order to find explicit formulas for the coefficients c;,,, we can multiply Eq.
(4.1) by p(z)pg(z) and summing on z. Then, by using the orthogonality properties of the
polynomials py(z) we get

b—1 b—1
q;()rm(z)pn(2)p(x) _ Bn
Cimn = Z ! = 2 = Z QJ ) V" pulz) - (4.3)
r=a n 71 r=a
Now, the same method that leads to Eq. (3.7) gives us (4.2). [ |

In the special case when g;j(x) is the jth-degree hypergeometric polynomial satisfying
the following second-order difference equation

o(2) Avy+7(2) Ay+ry =0, y=qg;(a),
the following theorem follows

Theorem 4.2 The ezplicit expression of the coefficients cjmy in the expansion (4.1) is
given by

(—1)"B, B,
Cimn = TMX
4.4
ke oo\ bolich — (44)
x 3 (k )Aij ( )mw—k—lnv“rm(x—k)],
k=k_ z=a [=0
where k— = max(0,n —m) and k4 = min(n, j).
Proof: We will start from Eq. (4.2)
(1) B, i
Cjmn = Tn Z pn(x = 1) 7" [rm(2)g;(2)] - (4.5)
Applying the Leibniz’s rule for the n-th difference derivative of a product,
“(n —
V' f(@)g(x)] = ( I ) [V F(@)[v" gz~ k)],
k=0
to rm(2)q;(x),
“(n
V" frm(2)g;(2)] = ) ( i ) [V a; (@) rm(z — k)] (4.6)
k=0
together with Eq. (2.9) for the orthogonal polynomial ¢;(z),
AyB;
k — Ak Jk2g —k 5
qi(z) = AN¥qi(x — k) = ——— i(x—k)] , 4.7
V(o) = Atayo k) = =BT Ik [y - ) (4.7

12



where the parameters B; and Ay; are defined in terms of &(z) and 7(z) as in Egs. (2.13)
and (2.14) respectively and using Eq. (2.23) we find the expression

o ED"BaBiNS (0 1N onk (g P @)
cim = IS () A D et~ MR O ] (1)

Furthermore, the Rodrigues parameter Bj is directly related to the leading coefficient
a; of the polynomial ¢;(z) as in Eq. (2.12). Eq. (4.8) can be written as

np Bkt o L et c—n .
i = H{#gﬂj(,ﬁ )Ajk;[v“rmm—kn% Ve -] . (49)

where
k_ =max(0,n —m), ki = min(n,j), (4.10)

The use of the explicit expression of 77 % [g;(z — k)] allows us the find the wanted equa-
tion (4.4). m

The expansions considered in the previous Section can be considered as the particular
case 7 = 0 of the present one. Notice that B,/d> and Bjﬁjk can be expressed in terms
of the leading coefficients a,, and a;, respectively, of the polynomials p,(z) and g¢;(z) by
means of the Eqgs. (2.7), (2.12) and (2.14), respectively.

Up to now, to the best of our information, there only exists a formal, recurrent way
[11] to evaluate linearization coefficients. Its application to the simplest case, i.e., to the
expansion of the products of two Charlier polynomials in series of Charlier polynomials
of the same type, leads to a six-term recursive relation for the corresponding linearization
coefficients which has not yet been possible to be solved, even not at a hypergeometric
level by symbolic means (Petrovsek algorithm [44]). Also , Dunkl [14] for Hahn polyno-
mials and Askey and Gasper [10] for Kravchuk polynomials have been able to calculate
explicitly the expansion coefficients of the Clebsch-Gordan-type or conventional lineariza-
tion problems (i.e., those problems which involve polynomials of the same system). They
are collected in [53].

All these results are generalized by means of Eqs. (4.9) or (4.4). In particular, these ex-
pressions allow us to explicitly solve not only all Clebsch-Gordan-type expansion problems
of the classical discrete polynomials but also the modified ones which involve polynomials
of any classical system. There are 64 linearization formulas corresponding to the expan-
sions of all possible products of pairs of classical discrete polynomials in terms of each
classical discrete set, which can be described in full detail by using the Eq. (4.4).

4.1 Some special cases.

Let us apply the above formula for the cases 7, (z) = (2)m, rm(z) = ™ and z™.
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Corollary 4.1.1 The coefficients of the expansion

m+j
ng Z Cgmnpn

are given by

~ k ~
o (=D)"BuBm! K [(n Ajk
Cjmn = 2 k; k) tm—ntk)l "

Jj—k . b—1 .
ik pu(z —n)pjle—k—10)
: ;( ) ( ! )2 pr (7 — k) (

Corollary 4.1.2 The coefficient of the expansion

m—+j

«T) = Z djmnpn($)
n=0

are given by

~ k ~
(—1)”BnBJm' * n Ajk:
dimn = ~——2 21T —F
jmn 2 ;gk:, k) tm—ntk)

j—k
pn(z :0 r—k—1I
XZ(_1)1< )Z ]( k) )(x
=0
Corollary 4.1.3 The coefficients of the expansion

m+j
" q] Z emnpn

are given by
m+j

€imn = Z dgk:nsﬁn)
k=n

—n

(4.11)
k)m—n-i—k .

(4.12)
)[mfn+k:} ]

(4.13)

The expressions (4.11)-(4.13) complement and considerably generalize some lineariza-
tion formulas of similar type recently found by Belmehdi et al. [11]. Indeed, these authors
found recurrently the coefficients of the expansion (4.12) in the cases for which both poly-
nomials ¢;(z) and p,(z) are of the same Charlier, Meixner or Kravchuk character.

To conclude this section we will show two simple examples of the linearization problem,

which require the use of Theorems 4.1 and 4.2, respectively.

4.2 Examples.

Firstly, the linearization of a product of two Stirling polynomials 2™l in terms of the

Charlier polynomials
m—+j

= Z Cm,jnCh (x)
n=0

14
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is solved by the use of Th. 4.1 to give that

m p J! p—n
in = ) —_— X
Cm.jn <p—y><n>(p—m)!u

PR p—itlp-mtlp-n+l

(4.15)

)

Next, we apply Th. 4.2 to find the solution of the following linearization problem

where p = max(n,m, j).

m—+j

= Z Cm,j,ncﬁ(x)a (416)
n=0

obtaining

J ; 1 (—~)i—Fkyp—n
j m p\E (=) 0
k=max(0,n—m) k p—k n (p - m)'

-m—-k, p+1, 1
3F< p p

(4.17)

p—k+1Lp—m+1,p—m+1

- ,u), p = max(n,m, k).

This result can be alternatively found by means of Eqs. (4.14) and (4.15) together with
Egs. (2.20) and (2.24). Notice the finiteness of the k-summation and the terminating
character of the involved hypergeometric function 3Fs.

Expressions similar to Eq. (4.16) referred to the rest of classical discrete hypergeo-
metric polynomials with the non-orthogonal polynomials ™ and (z),, may be equally
found.

5 The connection problem between discrete hypergeomet-
ric polynomials.

A very important particular case of the expansion (4.1) is that corresponding to m = 0,
i.e., the connection problem

J
=Y cjonpn(z), (5.1)
n=0

which has received a lot of attention in the literature [5, 8, 17, 20, 25, 30, 47, 48] but still
not fully solved for discrete hypergeometric polynomials. Here, this solution immediatly
follows from the general linearization formulas (4.9) or (4.4), what enable us to find easily
connection coefficients in terms of a terminating hypergeometric function. The latter is
illustrated in Subsection 5.1 for all posible pairs of classical discrete orthogonal hyperge-
ometric polynomials.

Indeed, one has from Eq. (4.9) with m = 0 that the connection coefficients are

oim = U DD 57 0020 o5 52)
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which using (2.11) and (2.14) becomes into

Cjon = ( = B; Z Z ~n ( S ) (1) pj(x —n—k) . (5.3)
(-7 ! 721, r=ak P k

The problem (5.1) is also a particular case of the expansion (3.1); namely when the
discrete polynomial r,,(z) posesses the hypergeometric character. So, Eq. (5.3) may
be alternatively obtained by the inclusion of that fact in Eq. (3.2). In the case when
5(z) = o(x) and (d,b) = (a,b), the corresponding connection problem (5.1) involves
discrete hypergeometric polynomials orthogonal in the same interval, and the expansion
coeffiecients given by (3.2) reduce as

(-1)"B,B A —C np Jj—n k ~
Cjon = - aamml) DD D ( )(—1) pil—n—k) .  (54)
n r=a k=0 P
For completeness, let us point out that there is another equivalent expression for the
connection coefficients ¢, which sometimes is very useful. The general polynomial solu-
tion of the equation (2.1) is given by (2.15). Then, the solution for the direct connection
problem

J
z) = Z ajk:v[k}, (5.5)
k=0

is given by
(=15 (=71) j(—F2)j(x2 — F1 — T+ § — V)g(—n)k
(=Z1)k(=Z2)k(z2 — Z1 — To + j — 1),k!

This formula inmediately follows from the identity z*! = (=1)*(z); and the definition
of the generalized hypergeometric function (2.16). Let us also remark that sometimes it
is better to use the combination of the above formula with formula (3.8) wo obtain the
searched expansion coefficients. Notice that

Ak = (56)

ji—n

J J
= Z ajkx Z Qjk Z d;mpn Z (Z a; k+ndk+nn) pn( ) (57)
k=0 =

k=0

Cion
where a4, and dyin,, are given by (5.6) and (3.8), respectively. Again here, the co-
efficients cjg, depend only on the coefficients of the second order difference equation of
hypergeometric type (2.1).

Finally, let us mention that from Eqgs. (5.1)-(5.7) one obtains, as a byproduct, the so-
lution for the conventional connection problem; i.e., that associated with the four classical
orthogonal discrete hypergeometric polynomials (Hahn, Meixner, Kravchuk and Charlier).

5.1 Application to all possible pairs of classical polynomials.

In this section we will provide the formulas connecting the different families of clas-
sical hypergeometric discrete polynomials, which generalize results already obtained by
different authors using different approaches, e.g. [5, 17, 25, 30, 48], in particular, the most
general case involving two Hahn polynomials is given (see formula (5.17) from below) from
where, the most general connection formula given by Gasper [17, Eq. (4.1), pag. 188] is
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obtained as a particular case.

The first eight cases can be computed by using (5.3) and the other ones with the help
of (5.7). Notice that if we equate both expressions (3.8) and (5.7) one can obtain different
summation formulas involving terminating hypergeometric series of the type given in the
Appendix.

5.1.1 Charlier-Charlier

From formula (5.4) and using the main data of the Charlier polynomials (see Table 1)
we find for the connection coefficients between the families

J
Cff(x) = Y cjonCy (2),
n=0

the expression

Cjon = ( 7]7, > (y = w) ™. (5.8)

5.1.2 Meixner-Meixner

For the Meixner-Meixner problem we have
J
MY (z) =" cjon My P (z),
n=0

where

S ( j ) (L= )" "T(j +7)
M\ n ) Tla+n)(p—1)r

i—n . k .
k[ d—n B\ I(n+k+a) n+k+a,jt+y
e () ) reem (T

Using the transformation formula (A.3), the identity ( J ;n ) = (—DF 22— 45 well

as formula (A.4) we finally obtain

. _ ] I j=n . F n—j,n-l—a
C]On—<n><u_1> (7+n)]—n2 1 n+ 7y

In particular, for the special case o = vy, Eq. (5.9) becomes

[ o B—u g
Wm_<n>”+ ””<w-nm—n> ’

The second case corresponds to 3 = pu, then (5.9) becomes

Cjon = ( 7jz ) (ﬁ)yn (v — O‘)j—n.
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5.1.3 Kravchuk-Kravchuk.

For the Kravchuk-Kravchuk expansion,
J
K;)(:E,N) = ZCjOan($7M)7 ]Smln{NaM}a
n=0

the same procedure used in the Meixner-Meixner case gives us

] . i n—j7,n—N
Cjon = < / ) (M = j+1)j-n(=p)™" 2F1< 2 ]%)- (5.10)
In the particular case p = q its reduces to
Cjon = < ‘71 )Pj"(N—M)j—n,
and for the case M = N
NN T vy )
Cjon = < n ) (q) (q p) (N J+ 1)]—n-
5.1.4 Meixner-Charlier.
In this case we have the expansion
j
M (z) = cjon C (),
n=0
with
NERIATRCESE S O s
Cjon = — Z — ) 1 al.
n (w—=1)7" = T(y+n+k)\ Fk 7 m+k+

If we use the transformation formula (A.6) and the sumation formula (A.7) we find

Cjon = ( 7j1 > <ﬁ>y_n (7+n)j—n 1F1< Z-I_-’z/ M) (5.11)

7
5.1.5 Charlier-Meixner.

For the Charlier-Meixner expansion

j
Cff (z) = Y cjon M7" (),

n=0

one finds from Eq. (5.4) that

= (1) Copre (00

L) (5.12)
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5.1.6 Meixner-Kravchuk.

In the Meixner-Kravchuk case,
J
MJ’#(x): ZCjOHKTI;(xaN)a J<N
n=0
we find

' jon n—j,n—N
o= () oreen (G5 (0

5.1.7 Kravchuk-Meixner.

For the Kravchuk-Meixner connection problem,

J
KP(z,N) =" cjon M’ (), j<N
n=0
we have
(g N {_\j-n n—j,n+a| [
5.1.8 Kravchuk-Charlier.
For the Kravchuk-Charlier connection problem,
J
Kf($,N):ZC]0nC#($), J <N,
n=0
we have
. ' - "o i
jon = ( ; ) (N +1=)jon(-py " F( o N “%) (5:15)
5.1.9 Charlier-Kravchuk.
For the Charlier-Kravchuk problem,
J
CJIL($):ZC]071K£($7N)7 J <N,
n=0
we have
] P n—j,n—N
Cjon = < J ) (—p) " 2F0< J - ‘ - Q)_ (5.16)
n K

5.1.10 Hahn-Hahn

For the Hahn-Hahn problem, we use Eq. (5.7). A straightforward study of the problem

J
h;‘y’u(xaM) = Z CjOn hg’ﬂ(x7N)7 j S mln{N - 17M - 1}7
n=0
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allows us to find

o < j ) (I+n—M)jn(l+n+p)jn
Cjon = n

(I+n+j+7+u)jn

(5.17)

T n—jg,1+n—-N,n+B8+1,1+5+n+v+p
43 l+n—M,n+pu+1,2n+a+08+2

1>.

g YA+n-—N)j n(l+n+p)jn n—j,n+B+1,1+j+n+y+pu
Cj[]n: . 3F2
n (1+n+]+’)’+ll«)j—n n+pu+1,2n+a+pG+2

In the particular case N = M (5.17) reduces to

5.1.11 Hahn-Charlier
For the Hahn-Charlier problem,

WS (@, N) = Zcﬂm ), G<M-—1,

we find that

(i YA+n—=N)jn(l+n+8)j-n n—j,l1+j+n+a+p | _
CJOn—<n> A+n+j+ath) 2 Fy 1+n—Nn+B+1 al. (5.18)

5.1.12 Charlier-Hahn
For the Charlier-Hahn problem,

J
n :l?) = ZCjOthc:’ﬁ(xaN)a J<N -1,
we find that
(P Ly (P =N g1 L
CJUn—<n>( 1) 3F1< M+ a+f+2 w) (5.19)

5.1.13 Hahn-Meixner
For the Hahn-Meixner problem,
5 J
«, , .
hj (xaN):ZCjOnMr’zyu(a;)a J<N-1,
n=0

we find that

oo Q=N (Ut ntp)ia
40n. n (I+n+ji+y+u)jn
(5.20)
o 3F2<n—j,a+ﬁ+j+n+1,7+n L)
l1+n—N,n+p8+1 u—1
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5.1.14 Meixner-Hahn

In the Meixner-Hahn case,
J
MM(z) =" cjon hy? (z, N), j<N-1,
n=0

we find that

. ji—n .
3 _ J 1% X ’I’L—j,].-l-n—N,TL-i—ﬂ-l-].
CJO”_<n> <H—1> (7+n)]"3F2< a+fB+2n+2,v+n

w—1
T) (5.21)

5.1.15 Hahn-Kravchuk
For the Hahn-Kravchuk problem,

J
h?’ﬁ(l’,N) = ZCjOnKﬁ(a:aM)a .7 Smln{M_lﬂN}’
n=0

we find that

X

)

o :<j> (1+n—N)jn(l+n+p)jn
s n (T+n+j+7+p)jn
(5.22)
X3F2(n—j,a+ﬁ+j+n+1,n—M
l1+4n—N,n+p+1

5.1.16 Kravchuk-Hahn

In the Kravchuk-Hahn case,
J
KP(z, M) =" cjon hP(z, N), j < min{N — 1, M},
n=0

we find that

] P n—j7,1+4n—N,n+p8+1
CjOn:<7jl> P’ "(n—M)j—n3F2< ozj-l-ﬁ+2n+2 " M

1). (5.23)

p

Some of the above connection formulas have been previously found in a different man-
ner either analytically [17] or recurrently [5, 20, 25, 30, 48]; at times, the recurrence rela-
tion for the expansion coefficients may be solved by symbolic means. Gasper [17] gave the
explicit solution of the Charlier-Charlier problem as well as the hypergeometric represen-
tation of the expansion coefficients of the Meixner-Meixner, Kravchuk-Kravchuk, Hahn-
Hahn (with the same interval of orthogonality), Kravchuk-Charlier, Kravchuk-Meixner
and Kravchuk-Hahn problems; that is, he only considers the seven connection problems
with positive coefficients. Lewanowicz [30] found recurrently the expansion coefficients
for all possible pairs of the Charlier, Meixner and Kravchuk families; however, he is only
able to lead to an explicit or hypergeometric-function solution in the Charlier-Charlier,
Meixner-Charlier and Kravchuk-Charlier cases. Ronveaux et al. [48] are able to alterna-
tively solve in a recurrent way the Charlier-Charlier, Charlier-Kravchuk, Charlier-Meixner,
Meixner-Meixner, Meixner-Charlier and Kravchuk-Kravchuk cases; however, they are only

21



able to find an explicit solution in the Charlier-Charlier case, and the hypergeometric-
function solution in the Kravchuk-Kravchuk case by symbolic means. To this respect see
also [20]. Finally, Koepf and Schmarsau [25] have found with their computer-algebra-based
method the explicit expression for the coefficients of the connection problem between clas-
sical discrete polynomials of the same type for some particular choice of the parameters
(for example, they consider polynomials in the same interval of orthogonality or polyno-
mials with equal parameters) save in the Charlier case, of course, where they obtained the
complete solution.

It is worth to mention here that the connection coefficients of the aforementioned
sixteen cases may be alternatively obtained by use of general theorems on expansion of
generalized hypergeometric functions in series of functions of the same kind [29, 30], such
us those described in [36, §9.1], [16]. Moreover, theorems of similar kind [36, §12.4], [54]
may be potentially used to produce recursion formulas for the coefficients of the above
expressions. This hypergeometric approach is being developed by S. Lewanowicz [35].

Finally, notice that, since the coefficients (5.9)-(5.16) are terminating hypergeometric
series of the type oFy, 1F; and oF), they can be identified with some classical hyperge-
ometric polynomials, e.g. the Jacobi, Meixner or Kravchuk (;F;), Laguerre (;F;) and
Charlier (2F() polynomials.

Summary and Conclusions

We have studied

e The expansion of a general discrete polynomial r,,(z) in series of an arbitrary (albeit
fixed) orthogonal set of discrete hypergeometric polynomial {p,}, and

e The expansion of the product r,,(z)g;(z) in series of the orthogonal set {p, }, where
g;(z) is any discrete hypergeometric polynomial.

The corresponding expansion coefficients are given in a compact and closed form by
means of the coefficients which characterize the second-order difference equations satisfied
by the involved polynomial(s) as well as the leading coefficient of their explicit expression.
The resulting expressions, which are the main contributions of this work, are given by Egs.
(3.2), (4.9) or (4.4) and (5.3) or (5.7). They allow us to calculate both analytically and
symbolically the expansion coefficients what is greatly useful to solve very involved math-
ematical problems, such us, e.g. some of queuing theory, birth and death processes and
coding theory, and to deeply understand some physical phenomena which often require to
obtain the matrix representation of quantum-mechanical observables; the determination
of the corresponding matrix elements makes often use of connection and/or linearization
formulas of the type here considered. Let us point out that our results, specially Eq.
(4.9) or (4.4), opens a research avenue to determine practical connection and linearization
formulas for arbitrary discrete hypergeometric polynomials. Its extension to generalized
linearization expression for products of any number of discrete hypergeometric polynomi-
als of great actual interest [23, 27, 31, 38] may be easily carried out.

The mathematical usefulness of these general expressions is illustrated by the explicit
of the expansion coefficients of the non-orthogonal families (z),,, ™ and z™ in terms
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of each classical discrete family (Hahn, Meixner, Kravchuk and Charlier). Also the coef-
ficients of the expansion of the products (z),,q;(z), z™g;(z) and 2™¢;(z) are found for
an arbitrary discrete hypergeometric polynomial. Furthermore, as a nice byproduct, the
complete solution of the conventional connection problem for all possible pairs of classical
polynomials (Hahn, Meixner, Kravchuk and Charlier) is given from the same root in a
unifying way. Some specific cases of this problem can be encountered dispersely in the
literature.

Finally, we believe that the constructive approach here presented is a complemen-
tary, very useful alternative to the methods of Markett, Ronveaux et al and Lewanowicz
to attack succesfully the long-standing connection and linearization problems of discrete
hypergeometric polynomials. The same approach has been used for hypergeometric poly-
nomials of a continuous variable in both connection [50] and linearization [6] problems, as
well as for ¢g-polynomials [4].

A Some formulas involving hypergeometric functions.

In this section we will enumerate some relations involving hypergeometric functions
which were useful in order to obtain the results of the paper.

Formulas involving >F;.

Special values [1, Chapter 15]

2F1< acb 1) = ?EE)E(;);(Z:Q, c#0,—1,-2,...,R(c—a—b) > 0. (A.1)
2F1< ab ’ ‘x> =(1-z)" Vb € R. (A.2)

Linear transformation formulas [22, p. 425]

2F1< acb I> :(1—$)_a2F1<a C_b

C
:(1_$)c—a—b2F1< C—aCC—b ‘x)

A summation formula [22, Eq. 65.2.2, p. 426]

5 e (757 b)
k=0 '

x —_—
r—1)

b :zr-l-y—:z:y>. (A.4)

Formulas involving 1F;.

Special values [1, Chapter 13]

:1:) =e", Va € R. (A.5)



Linear transformation formula [22, p. 431]

1F1< “ x) =e"’“’1F1< c-a
C C

A summation formula [22, Eq. (66.2.5), p. 431]

< -k pn( o |\_ g (o
1;) k!(c)k yalh c+k |” =ehbi g

Finally, we want to remind, as we already pointed out in Section 5.1, that equating
the expressions (3.8) and (5.7) one can obtain different summation formulas involving
terminating hypergeometric series of higher order.

— x> (A.6)

x — y). (A.7)
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