Orthogonal Polynomials in one and several variables
and applications

Auto regressive models in 1D

q
Sy = — Zaksn_k + oy, >0 (1)
k=1

Random models

00
1=—00"

Weakly stationary (2nd order) processes {X;}
i} X; € L*(P),
it} E(X;) =m for all i,

it} cp, = E(X;1n, X;) for all i,

White Noise process Z(0, %)

h # 0

h=0

Autoregressive process AR(q) Let {u,} be a Z(0,1) pro-

m =0, Ch:{o(_)g

cess. The process {s,} is an AR(q) process if it is a weakly

stationary with zero mean and satisfies (1).



An AR(q) process is said to be causal if there exists a sequence

{4;} € I* such that s,, = Z%'u”—j Vn
j=0

Note s,, is independent of u;, j > n.

It follows from Fourier series that an AR(q) process has a

causal solution if and only if

q
p(z) =1+ Z 2"
k=1

is a stable polynomial.
Let U = {2z : |z] < 1}. A polynomial p(z) is said to be
stable if p(z) # 0,z € U.



Typically you are given or you estimate a finite number of
correlation (autocovariance) coefficients {cp}¢, c—p = Cp.

What conditions must these correlation coefficients satisfy
in order for there to be a causal AR(q) process {s,} with ¢, =
E(snin,8,) h=0...q.

Arrive at Yule-Walker equations

Cq Cq—l NP CO_

Since the above matrix is positive semidefinite there is a

unique solution if and only if it is positive definite.

How to see stability?



Let 1 be a positive Borel measure support on the unit circle
with an infinite number of points of increase. Let {¢;(2)},i =
0,...,n, be the unique sequence of polynomials such that ¢;(z)
is a polynomial of degree 7 in z with positive leading coefficient
and — [ (), () dpu(6) = 1.

2w J_ .

Orthogonality implies that

1 [T : : :
gy <an(ew)z_gd,u =0,0<j<nz=c¢e"
T J—x

Recurrence formula
The polynomials ¢; above satisfy the following difference

equations.

and




The coefficients {«,,} are called recurrence coefficients. Note
a(n)® =1—|on|*,

so that

|, | < 1.



From recurrence formula we find

— , =

(2)Pn(21) = Pn(2)Pn(21)

— —

¢ p—1(2)Pn—1(21) — 2Z10n-1(2)Pn—1(21)

3

Christoffel-Darboux formula,

5u(2)0n(21) = ou(2)Pnl(z1) =
(1—251) N ;¢Z(z)¢z(zl) _Kn(zvzl)
and
Gu(2)0n(21) = 22100 (2)Pn(z1) _ N, =
1= 2m) = ;@( )$i(z1)
Also

Z 0i(2)pi(21) = [1,2,22..2"]C L, 21...20"

1=0

Follows from Cholesky factorization.
C,' =U.U;

multiplication by [1, z...2"] and [1, z1...27']" gives result.
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Properties

1) bn is stable (no zeros inside and on the unit circle)

I o—i30 g e "’ :
2)Cj:% J :—/ d@,\jlgn

—Tr



Relation to orthogonal polynomials.

From properties assumed on s, imply

1 T

2r .

E(snBn—j) =¢j = e""%dp(0)

p a positive measure supported on the unit circle. Let

®g, @1 - - - be its orthonormal polynomials. Then

If Q,.(0) is a strictly positive trignometric polynomial of

11
degree n Then duy = 2——d9 is called a Bernstein-Szego mea-
7
1 1

——df
2T |6 (2)2

sure and from above is given by duy =



Definition
H>* ={fe€ H{U),sup|f(2)] < o0, z € U}

[ fllee = sup |[f(2)| < o0, z€ U}

f is an inner function if f € H* and lin’i |f(re®| =1 for
almost everywhere 6.

The Christoffel-Darboux gives

k’”\
bnﬂl

(1 — zw) fi(w). z,w e U
k—0

where f is a rational inner function of degree n and f; are
rational function with the same denominator as f.
This gives a simple proof of Von Neumann’s inequality.
Let H be a Hilbert space. An operator 1" acting on H is
said to be a contraction if ||T|| < 1. T is said to be a strict

contraction if ||T]| < 1.



Theorem Let 1" be a strict contraction on a Hilbert space

H. If P is a polynomial then
1P(D)]] < sup | P

Proof(Cole-Wermer). T is a strict contraction if and only
if I —TT* > 0. Let P be a polynomial in z with |P(2)] < 1
for |z| < 1. By Caratheorory’s theorem there is a sequence of
rational inner functions {f,,} such that f,,, — P uniformly on
each disk |z| < r < 1. Since T is a strict contraction there is
and r < 1 such that ||T|| < r. From the Christoffel-Darboux

formula

)(1 = TT*)) fom(T)" 2 0,

M .

I — fm(T

x

so that || f,(T)]| < 1 which gives the result.
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What about 2D?
Many things not true.
AR(p) model.

q

p
Snmz::_'E § k. 1Sn—k,m—1 T OUp m,
k

=0 (=0

(k,1) # (0,0),up m is a doubly indexed sequence of mean zero,
unit variance white noise random variables.
In order to talk about causal solutions need a notion of
forward and past.
Helson- Lowdenslager half plane S
1. (0,0) ¢ S
2. if (n,m) € S then (—n,—m) ¢ S (n,m) # (0,0)

3. if (n,m) and (ny,mq) in S then (n+ny,m+mq) € 5

S={(n,m),{—c0 <m < oo,n>0}U{0<m,n=0}}
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AR(p) is a causal process if

Sn,m — E ﬁk,lun—k,m—l-

(k,l)eSu{0,0}

where

D 1Bl < o0

Let
U'={z2=(21,...2n), 2 € C |z;| <1, 1 <7< n},

T" ={z=(21,...2n),z €C |z =1, 1<i<n }

For z € C"™ and k € Z", 2 = 281 25> 2Fn
A polynomial p(z),z € C" is said to be stable if
p(z) #0 |z <1, 0<i<n

As above a causal solution exists if and only if

p q

p(z,w) =1+ Z Zak,lzkwl

k=0 1=0

(k,1) # (0,0) is stable.
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Proposition Let p(z, w) be a polynomial of degree (n,m).
The following are equivalent
a. p is stable,
b. p~ (k ¢) =0 for all (k,¢) € {(k,f) : k< 0or (k=0 and
£ <0)},
p—1(k,0) = 0 for all (k,¢) € {(k,0):k <0 or £ < 0}.
Here the (k, /) Fourier coefficient of f(z,w) is denoted as
fk,0).
We show that b= c.

Let p(z,w) ij )2 and p~t = qu(w)zj. Then
j=0
qo(¢) =0 for £ < 0. Smce pp~! =1, we find

po(w)go(w) =1

and

13



By induction suppose gi(¢) =0, £ < 0 then

1
po(w)

Qr+1(w) = —

k
Zpk+1—£(w)Q€(w)a
£=0

= —qo(w) > pr1—e(w)qe(w).
£=0
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The correlation coefficients are

Ck,l = 8(5n—l—k,m+l3n,m)~
and
C—k,—1 = Ck,1-

Conditions on correlation coefficient matrix in order to
obtain a causal solution are more complicated.

Theory of bivariate orthogonal polynomials will be useful.

If

E(IY  sijz'w|?) >0,
i,

for all finite sums Bochner’s Theorem says that there is a two

variable Borel measure 1 on the bicircle such such that

Ch,l :/ e”"Me " du(0, ¢).
T2
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Useful to introduce two orderings

The lexicographical ordering which is defined by
(k,l) <lex (]Cl,ll) <— k < ky or (k — ki and [l < ll)

We shall also use the reverse lexicographical ordering which is

defined by

(k,l) <revlex (klyll) <~ (l,k) <lex (ll,k'l).

If we form the (n 4+ 1)(m + 1) x (n 4+ 1)(m + 1) moment
matrix C, ,, in the lexicographical ordering then it has the

special form

Co C., --- C_,
¢, Co -+ Copp
Cn,m — . . .
Cn Cn—l o C10
where each C; is a (m + 1) x (m + 1) matrix of the form
Cio Ci—1 - Ci—m
C@ = ) 1= 07 2
Ci,m Ci,0
and
c_,=C".



Thus C), , is a block Toeplitz matrix where each block is
a Toeplitz matrix so it has a doubly Toeplitz structure.

Appeal to theory of two variable orthogonal polynomials
and Matrix orthogonal polynomials on the unit circle. Follow
Delsarte et.al.

We perform the Gram-Schmidt procedure on the monomi-
als

{ziwj, 0<i<n, 0<j<m}

using the lexicographical ordering and define the orthonormal

polynomials ¢! (z,w), 0 < nn < n,0 < | < m, by the

nn,m

equations (z = e, w = €'?),

Grnmz W dp(0,¢) =0,
T2

for0 <i<nn,0<j3<mori=nn,0<j <l with

;’E’L'I’LNL gznml(7r) )
T2 ’ ’

l _gnn,l nn 1 ,J
nn,m(z,w) =k w' + g k

nnnnJZ nn,m,l
('iaj)<lex(nn7l)

2w’ .
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With the convention kggfn ; > 0, above equations uniquely

specify (blm,m.

Polynomials orthonormal obtained using the reverse lexi-

l

n,mm

cographical ordering will be denoted by ¢
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Set,
m
i,m

—1
Di'm

0
,m

Note that
/ Dip 2 P dp=00<k<i, 0<j<m
T2

If we write

then L]"(z), ¢ = 0,1..n satisfy

/ L7 (2)dMimn (0)L} (2)" = Im+10;5 2 = €
T

Then L;" ¢ = 0..n are left matrix polynomials orthonormal with

respect to the measure

dM.,,(0) :/T[l,w..wm]*dug(@[l,w..wm],

where dug(¢) = du(6, ¢) and w = €*? so that dM,, is a Toeplitz

matrix.
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Matrix orthogonal polynomials
In general the are left matrix orthogonal polynomials as
above but also right matrix orthogonal polynomials R;"(z)

which satisfy

/ R (2)" dMpn(0) R} (2) = L4101 2 = €
T

Also T;n(z) = /L7 (1/2)* is stable. i.e. det(f?(z)) +
0|z] < 1. The same is true of <E;n(z) This follows from the
matrix Christoffel-Darboux formula.

In the case above L (2)? = JR™(%).J where J is an (m +

1) x (m 4+ 1) matrix with ones down the reverse diagonal and

zeros everywhere else.
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What does doubly Toeplitz structure give

Recurrence relations

A HT

An,mq)n,m — Zq)n—l,m - En,m o

n—1,m

~

F77,,7”1’1,(I)n,m — (I)n,m—l - Kn,mq)n—l,ma

Tk

Lhm@m = 0P mo1 — K, @

n,m - n—1,m>

*
(I)n,m — In,mq)n,m + Fn,mq)n,m—la

T ~ T

<6n,rn — Ifrll,m@n,m + (Pf}l,m)T (I)

n,m—1

Orthogonality gives various relations among matrices. For in-

stance

ComTym =1 — KnmK;, o,

Matrix Christoffel-Darboux formula

~

Hn m — (1 - Zgl)q)n,m(zla wl)T&);’;,m(za w)T + Hn,m—l

Y



Hyp = 1w 2"w™Cp 0 [, w2 w]

= [1,z..2"w™C, 1. [1, z1...2fw]]*

What about stability. If

0= Kn,m — / &)n—l,m@; m_ld,u
T2 ’

Then from Matrix Christofell-Darboux formula

<an,m(z7 w)?n,m(zla wl) o an,m(Z, w)qbn,m(zla wl)

~

= (1= 221)®@p_1,m(z,0)T %1, (z1,w1)7T

+ (1= wiy) Ty g1 (2,0) B,y g (21,1) "
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K, m = 01is a geometric condition which can be translated
into a low rank condition on certain submatrices of C}, ,,,. Thus
it C), , 1s positive definite and satisfies certain low rank condi-
tions then there exists a causal solution to the autoregressive
filter problem discusses above.

As in the one variable case this gives stability and spectral
matching of <gn,m(z, w)

If ?n’m is stable then

1 dodo

du(8,¢) = 1 |Gn,m (0, 0) 2

is a two variable analog of a Bernstein-Szego measure.
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A rational function R of n complex variables z1, ..z, is the

P
ratio of two polynomials of n complex variables i.e R = —.

Q

Note we can eliminates common factors of P and () however

their zero sets may still intersect. For examples

R(z1,29) = 21/ 2.

The degree of a polynomial P is the maximum of the total
degrees of the monomials appearing in P with nonzero coeffi-
cients.

A rational inner function R of n complex variables is a
rational function such that R € H>(U") such that |R(z)| =1

aezeT"
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Rudin has shown that every rational inner function of n
comples variables R is of the form

M(2)Q(1/7)

R(z) = 0z)

where () is a polynomials in z that is nonzero in U" and M
is a monomial of sufficiently high degree so that the above
numerator is a polynomial.

Caratheodory Theorem

Theorem Every f € H™(U") with |f| < 1 is a limit
(uniformly on compact subsets of U™) of a sequence of rational

inner functions which are continuous on U".
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Christoffel-Darboux again gives
1 - f(sz)f(zlawl)
= (1—221) > fi(z,w) fi(21,w1)
j=0

+ (1 — wwy) ng(zaw)gk(zlawl)a
k=0

where f is a rational inner function on D?.

This gives new proof of Ando’s see paper of Cole-Wermer
Theorem

Let T7 and T5 be two commuting strict contractions on a

Hilbert space H. If P is a polynomial on D? then

|1P(T, T2)|| < sup|P|
D2
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